Cargando…

Cudrania cochinchinensis attenuates amyloid β protein-mediated microglial activation and promotes glia-related clearance of amyloid β protein

BACKGROUND: Microglial inflammation may significantly contribute to the pathology of Alzheimer’s disease. To examine the potential of Cudrania cochinchinensis to ameliorate amyloid β protein (Aβ)-induced microglia activation, BV-2 microglial cell line, and the ramified microglia in the primary glial...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Chung-Jen, Chen, Chien-Chih, Tsay, Huey-Jen, Chiang, Feng-Yi, Wu, Mine-Fong, Shiao, Young-Ji
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3750318/
https://www.ncbi.nlm.nih.gov/pubmed/23915297
http://dx.doi.org/10.1186/1423-0127-20-55
Descripción
Sumario:BACKGROUND: Microglial inflammation may significantly contribute to the pathology of Alzheimer’s disease. To examine the potential of Cudrania cochinchinensis to ameliorate amyloid β protein (Aβ)-induced microglia activation, BV-2 microglial cell line, and the ramified microglia in the primary glial mixed cultured were employed. RESULTS: Lipopolysaccharide (LPS), Interferon-γ (IFN-γ), fibrillary Aβ (fAβ), or oligomeric Aβ (oAβ) were used to activate microglia. LPS and IFN-γ, but not Aβs, activated BV-2 cells to produce nitric oxide through an increase in inducible nitric oxide synthase (iNOS) expression without significant effects on cell viability of microglia. fAβ, but not oAβ, enhanced the IFN-γ-stimulated nitric oxide production and iNOS expression. The ethanol/water extracts of Cudrania cochinchinensis (CC-EW) and the purified isolated components (i.e. CCA to CCF) effectively reduced the nitric oxide production and iNOS expression stimulated by IFN-γ combined with fAβ. On the other hand, oAβ effectively activated the ramified microglia in mixed glial culture by observing the morphological alteration of the microglia from ramified to amoeboid. CC-EW and CCB effectively prohibit the Aβ-mediated morphological change of microglia. Furthermore, CC-EW and CCB effectively decreased Aβ deposition and remained Aβ in the conditioned medium suggesting the effect of CC-EW and CCB on promoting Aβ clearance. Results are expressed as mean ± S.D. and were analyzed by ANOVA with post-hoc multiple comparisons with a Bonferroni test. CONCLUSIONS: The components of Cudrania cochinchinensis including CC-EW and CCB are potential for novel therapeutic intervention for Alzheimer’s disease.