Cargando…
Mapping behavioral specifications to model parameters in synthetic biology
With recent improvements of protocols for the assembly of transcriptional parts, synthetic biological devices can now more reliably be assembled according to a given design. The standardization of parts open up the way for in silico design tools that improve the construct and optimize devices with r...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3750501/ https://www.ncbi.nlm.nih.gov/pubmed/24267662 http://dx.doi.org/10.1186/1471-2105-14-S10-S9 |
_version_ | 1782281427508789248 |
---|---|
author | Koeppl, Heinz Hafner, Marc Lu, James |
author_facet | Koeppl, Heinz Hafner, Marc Lu, James |
author_sort | Koeppl, Heinz |
collection | PubMed |
description | With recent improvements of protocols for the assembly of transcriptional parts, synthetic biological devices can now more reliably be assembled according to a given design. The standardization of parts open up the way for in silico design tools that improve the construct and optimize devices with respect to given formal design specifications. The simplest such optimization is the selection of kinetic parameters and protein abundances such that the specified design constraints are robustly satisfied. In this work we address the problem of determining parameter values that fulfill specifications expressed in terms of a functional on the trajectories of a dynamical model. We solve this inverse problem by linearizing the forward operator that maps parameter sets to specifications, and then inverting it locally. This approach has two advantages over brute-force random sampling. First, the linearization approach allows us to map back intervals instead of points and second, every obtained value in the parameter region is satisfying the specifications by construction. The method is general and can hence be incorporated in a pipeline for the rational forward design of arbitrary devices in synthetic biology. |
format | Online Article Text |
id | pubmed-3750501 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-37505012013-08-27 Mapping behavioral specifications to model parameters in synthetic biology Koeppl, Heinz Hafner, Marc Lu, James BMC Bioinformatics Research With recent improvements of protocols for the assembly of transcriptional parts, synthetic biological devices can now more reliably be assembled according to a given design. The standardization of parts open up the way for in silico design tools that improve the construct and optimize devices with respect to given formal design specifications. The simplest such optimization is the selection of kinetic parameters and protein abundances such that the specified design constraints are robustly satisfied. In this work we address the problem of determining parameter values that fulfill specifications expressed in terms of a functional on the trajectories of a dynamical model. We solve this inverse problem by linearizing the forward operator that maps parameter sets to specifications, and then inverting it locally. This approach has two advantages over brute-force random sampling. First, the linearization approach allows us to map back intervals instead of points and second, every obtained value in the parameter region is satisfying the specifications by construction. The method is general and can hence be incorporated in a pipeline for the rational forward design of arbitrary devices in synthetic biology. BioMed Central 2013-08-12 /pmc/articles/PMC3750501/ /pubmed/24267662 http://dx.doi.org/10.1186/1471-2105-14-S10-S9 Text en Copyright © 2013 Koeppl et al; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Koeppl, Heinz Hafner, Marc Lu, James Mapping behavioral specifications to model parameters in synthetic biology |
title | Mapping behavioral specifications to model parameters in synthetic biology |
title_full | Mapping behavioral specifications to model parameters in synthetic biology |
title_fullStr | Mapping behavioral specifications to model parameters in synthetic biology |
title_full_unstemmed | Mapping behavioral specifications to model parameters in synthetic biology |
title_short | Mapping behavioral specifications to model parameters in synthetic biology |
title_sort | mapping behavioral specifications to model parameters in synthetic biology |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3750501/ https://www.ncbi.nlm.nih.gov/pubmed/24267662 http://dx.doi.org/10.1186/1471-2105-14-S10-S9 |
work_keys_str_mv | AT koepplheinz mappingbehavioralspecificationstomodelparametersinsyntheticbiology AT hafnermarc mappingbehavioralspecificationstomodelparametersinsyntheticbiology AT lujames mappingbehavioralspecificationstomodelparametersinsyntheticbiology |