Cargando…
Bioprocess data mining using regularized regression and random forests
BACKGROUND: In bioprocess development, the needs of data analysis include (1) getting overview to existing data sets, (2) identifying primary control parameters, (3) determining a useful control direction, and (4) planning future experiments. In particular, the integration of multiple data sets caus...
Autores principales: | Hassan, Syeda Sakira, Farhan, Muhammad, Mangayil, Rahul, Huttunen, Heikki, Aho, Tommi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3750505/ https://www.ncbi.nlm.nih.gov/pubmed/24268049 http://dx.doi.org/10.1186/1752-0509-7-S1-S5 |
Ejemplares similares
-
Changes in global gene expression of Vibrio parahaemolyticus induced by cold- and heat-stress
por: Urmersbach, Sara, et al.
Publicado: (2015) -
Flow Cytometry-Based Classification in Cancer Research: A View on Feature Selection
por: Hassan, S. Sakira, et al.
Publicado: (2016) -
Learning accurate and interpretable models based on regularized random forests regression
por: Liu, Sheng, et al.
Publicado: (2014) -
Covariance regression with random forests
por: Alakus, Cansu, et al.
Publicado: (2023) -
Text mining of CHO bioprocess bibliome: Topic modeling and document classification
por: Wang, Qinghua, et al.
Publicado: (2023)