Cargando…

Monomeric Ti(IV) homopiperazine complexes and their exploitation for the ring opening polymerisation of rac-lactide

BACKGROUND: The area of biodegradable/sustainable polymers is one of increasing importance in the 21st Century due to their positive environmental characteristics. Lewis acidic metal centres are currently one of the most popular choices for the initiator for the polymerisation. Thus, in this paper w...

Descripción completa

Detalles Bibliográficos
Autores principales: Hancock, Stuart L, Mahon, Mary F, Jones, Matthew D
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3750606/
https://www.ncbi.nlm.nih.gov/pubmed/23915921
http://dx.doi.org/10.1186/1752-153X-7-135
Descripción
Sumario:BACKGROUND: The area of biodegradable/sustainable polymers is one of increasing importance in the 21st Century due to their positive environmental characteristics. Lewis acidic metal centres are currently one of the most popular choices for the initiator for the polymerisation. Thus, in this paper we report the synthesis and characterisation of a series of monometallic homopiperazine Ti(IV) complexes where we have systematically varied the sterics of the phenol moieties. RESULTS: When the ortho substituent of the ligand is either a Me, tBu or amyl then the β-cis isomer is isolated exclusively in the solid-state. Nevertheless, in solution multiple isomers are clearly observed from analysis of the NMR spectra. However, when the ortho substituent is an H-atom then the trans-isomer is formed in the solid-state and solely in solution. The complexes have been screened for the polymerisation of rac-lactide in solution and under the industrially preferred melt conditions. Narrow molecular weight material (PDI 1.07 – 1.23) is formed under melt conditions with controlled molecular weights. CONCLUSIONS: Six new Ti(IV) complexes are presented which are highly active for the polymerisation. In all cases atactic polymer is prepared with predictable molecular weight control. This shows the potential applicability of Ti(IV) to initiate the polymerisations.