Cargando…

GOParGenPy: a high throughput method to generate Gene Ontology data matrices

BACKGROUND: Gene Ontology (GO) is a popular standard in the annotation of gene products and provides information related to genes across all species. The structure of GO is dynamic and is updated on a daily basis. However, the popular existing methods use outdated versions of GO. Moreover, these too...

Descripción completa

Detalles Bibliográficos
Autores principales: Kumar, Ajay Anand, Holm, Liisa, Toronen, Petri
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3750654/
https://www.ncbi.nlm.nih.gov/pubmed/23927037
http://dx.doi.org/10.1186/1471-2105-14-242
Descripción
Sumario:BACKGROUND: Gene Ontology (GO) is a popular standard in the annotation of gene products and provides information related to genes across all species. The structure of GO is dynamic and is updated on a daily basis. However, the popular existing methods use outdated versions of GO. Moreover, these tools are slow to process large datasets consisting of more than 20,000 genes. RESULTS: We have developed GOParGenPy, a platform independent software tool to generate the binary data matrix showing the GO class membership, including parental classes, of a set of GO annotated genes. GOParGenPy is at least an order of magnitude faster than popular tools for Gene Ontology analysis and it can handle larger datasets than the existing tools. It can use any available version of the GO structure and allows the user to select the source of GO annotation. GO structure selection is critical for analysis, as we show that GO classes have rapid turnover between different GO structure releases. CONCLUSIONS: GOParGenPy is an easy to use software tool which can generate sparse or full binary matrices from GO annotated gene sets. The obtained binary matrix can then be used with any analysis environment and with any analysis methods.