Cargando…
GOParGenPy: a high throughput method to generate Gene Ontology data matrices
BACKGROUND: Gene Ontology (GO) is a popular standard in the annotation of gene products and provides information related to genes across all species. The structure of GO is dynamic and is updated on a daily basis. However, the popular existing methods use outdated versions of GO. Moreover, these too...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3750654/ https://www.ncbi.nlm.nih.gov/pubmed/23927037 http://dx.doi.org/10.1186/1471-2105-14-242 |
_version_ | 1782281462864674816 |
---|---|
author | Kumar, Ajay Anand Holm, Liisa Toronen, Petri |
author_facet | Kumar, Ajay Anand Holm, Liisa Toronen, Petri |
author_sort | Kumar, Ajay Anand |
collection | PubMed |
description | BACKGROUND: Gene Ontology (GO) is a popular standard in the annotation of gene products and provides information related to genes across all species. The structure of GO is dynamic and is updated on a daily basis. However, the popular existing methods use outdated versions of GO. Moreover, these tools are slow to process large datasets consisting of more than 20,000 genes. RESULTS: We have developed GOParGenPy, a platform independent software tool to generate the binary data matrix showing the GO class membership, including parental classes, of a set of GO annotated genes. GOParGenPy is at least an order of magnitude faster than popular tools for Gene Ontology analysis and it can handle larger datasets than the existing tools. It can use any available version of the GO structure and allows the user to select the source of GO annotation. GO structure selection is critical for analysis, as we show that GO classes have rapid turnover between different GO structure releases. CONCLUSIONS: GOParGenPy is an easy to use software tool which can generate sparse or full binary matrices from GO annotated gene sets. The obtained binary matrix can then be used with any analysis environment and with any analysis methods. |
format | Online Article Text |
id | pubmed-3750654 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-37506542013-08-24 GOParGenPy: a high throughput method to generate Gene Ontology data matrices Kumar, Ajay Anand Holm, Liisa Toronen, Petri BMC Bioinformatics Software BACKGROUND: Gene Ontology (GO) is a popular standard in the annotation of gene products and provides information related to genes across all species. The structure of GO is dynamic and is updated on a daily basis. However, the popular existing methods use outdated versions of GO. Moreover, these tools are slow to process large datasets consisting of more than 20,000 genes. RESULTS: We have developed GOParGenPy, a platform independent software tool to generate the binary data matrix showing the GO class membership, including parental classes, of a set of GO annotated genes. GOParGenPy is at least an order of magnitude faster than popular tools for Gene Ontology analysis and it can handle larger datasets than the existing tools. It can use any available version of the GO structure and allows the user to select the source of GO annotation. GO structure selection is critical for analysis, as we show that GO classes have rapid turnover between different GO structure releases. CONCLUSIONS: GOParGenPy is an easy to use software tool which can generate sparse or full binary matrices from GO annotated gene sets. The obtained binary matrix can then be used with any analysis environment and with any analysis methods. BioMed Central 2013-08-08 /pmc/articles/PMC3750654/ /pubmed/23927037 http://dx.doi.org/10.1186/1471-2105-14-242 Text en Copyright © 2013 Kumar et al.; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Software Kumar, Ajay Anand Holm, Liisa Toronen, Petri GOParGenPy: a high throughput method to generate Gene Ontology data matrices |
title | GOParGenPy: a high throughput method to generate Gene Ontology data matrices |
title_full | GOParGenPy: a high throughput method to generate Gene Ontology data matrices |
title_fullStr | GOParGenPy: a high throughput method to generate Gene Ontology data matrices |
title_full_unstemmed | GOParGenPy: a high throughput method to generate Gene Ontology data matrices |
title_short | GOParGenPy: a high throughput method to generate Gene Ontology data matrices |
title_sort | gopargenpy: a high throughput method to generate gene ontology data matrices |
topic | Software |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3750654/ https://www.ncbi.nlm.nih.gov/pubmed/23927037 http://dx.doi.org/10.1186/1471-2105-14-242 |
work_keys_str_mv | AT kumarajayanand gopargenpyahighthroughputmethodtogenerategeneontologydatamatrices AT holmliisa gopargenpyahighthroughputmethodtogenerategeneontologydatamatrices AT toronenpetri gopargenpyahighthroughputmethodtogenerategeneontologydatamatrices |