Cargando…
Mining differential top-k co-expression patterns from time course comparative gene expression datasets
BACKGROUND: Frequent pattern mining analysis applied on microarray dataset appears to be a promising strategy for identifying relationships between gene expression levels. Unfortunately, too many itemsets (co-expressed genes) are identified by this analysis method since it does not consider the impo...
Autores principales: | Liu, Yu-Cheng, Cheng, Chun-Pei, Tseng, Vincent S |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3751367/ https://www.ncbi.nlm.nih.gov/pubmed/23870110 http://dx.doi.org/10.1186/1471-2105-14-230 |
Ejemplares similares
-
MiningABs: mining associated biomarkers across multi-connected gene expression datasets
por: Cheng, Chun-Pei, et al.
Publicado: (2014) -
An efficient method for mining cross-timepoint gene regulation sequential patterns from time course gene expression datasets
por: Cheng, Chun-Pei, et al.
Publicado: (2013) -
A framework for generalized subspace pattern mining in high-dimensional datasets
por: Curry, Edward WJ
Publicado: (2014) -
TTCA: an R package for the identification of differentially expressed genes in time course microarray data
por: Albrecht, Marco, et al.
Publicado: (2017) -
h-Profile plots for the discovery and exploration of patterns in gene expression data with an application to time course data
por: Pittelkow, Yvonne E, et al.
Publicado: (2007)