Cargando…
Nucleotide-binding oligomerization domain containing-like receptor family, caspase recruitment domain (CARD) containing 4 (NLRC4) regulates intrapulmonary replication of aerosolized Legionella pneumophila
BACKGROUND: Legionella pneumophila (Lp) flagellin activates signaling pathways in murine macrophages that control Lp replication. Nucleotide-binding oligomerization domain (NOD) containing-like receptor (NLR) family, caspase recruitment domain (CARD) containing 4 (NLRC4) and Toll-like Receptor (TLR5...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3751498/ https://www.ncbi.nlm.nih.gov/pubmed/23937571 http://dx.doi.org/10.1186/1471-2334-13-371 |
Sumario: | BACKGROUND: Legionella pneumophila (Lp) flagellin activates signaling pathways in murine macrophages that control Lp replication. Nucleotide-binding oligomerization domain (NOD) containing-like receptor (NLR) family, caspase recruitment domain (CARD) containing 4 (NLRC4) and Toll-like Receptor (TLR5) both recognize Lp flagellin in vitro, but whether these two receptors play redundant or separate functional roles in vivo is unknown. METHODS: The immune response of Nlrc4−/−, Nlrc4−/−/Tlr5−/−, and wild type C57Bl/6 mice was analyzed after in vivo infection with aerosolized Lp. RESULTS: Lp clearance from the lungs was delayed in Nlrc4−/− mice over seven days in comparison to wild type controls. Nlrc4−/−/Tlr5−/− mice had no additional defect. In contrast to TLR5, NLRC4 did not regulate recruitment of neutrophils to the lung. Although there were no differences among the mouse strains in the lung transcriptome at 4 hours, Nlrc4−/− and Nlrc4−/−Tlr5−/− mice had increased lung inflammation at 72 hours in comparison to WT. Nlrc4−/−/Tlr5−/− mice also had altered cytokine production at both 4 and 24 hours post infection when compared to wild-type (WT) and Nlrc4−/− mice. Lp replication in murine alveolar macrophages was NLRC4-dependent and TLR5-independent. CONCLUSION: These studies reveal that NLRC4 and TLR5 mediate different roles in the inflammatory response to Lp flagellin in an aerosolized infection model and NLRC4 regulates replication in both lungs and alveolar macrophages. |
---|