Cargando…

Development and application of a novel metric to assess effectiveness of biomedical data

OBJECTIVE: Design a metric to assess the comparative effectiveness of biomedical data elements within a study that incorporates their statistical relatedness to a given outcome variable as well as a measurement of the quality of their underlying data. MATERIALS AND METHODS: The cohort consisted of 8...

Descripción completa

Detalles Bibliográficos
Autores principales: Bloom, Gregory C, Eschrich, Steven, Hang, Gang, Schabath, Matthew B, Bhansali, Neera, Hoerter, Andrew M, Morgan, Scott, Fenstermacher, David A
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BMJ Publishing Group 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3753524/
https://www.ncbi.nlm.nih.gov/pubmed/23975264
http://dx.doi.org/10.1136/bmjopen-2013-003220
Descripción
Sumario:OBJECTIVE: Design a metric to assess the comparative effectiveness of biomedical data elements within a study that incorporates their statistical relatedness to a given outcome variable as well as a measurement of the quality of their underlying data. MATERIALS AND METHODS: The cohort consisted of 874 patients with adenocarcinoma of the lung, each with 47 clinical data elements. The p value for each element was calculated using the Cox proportional hazard univariable regression model with overall survival as the endpoint. An attribute or A-score was calculated by quantification of an element's four quality attributes; Completeness, Comprehensiveness, Consistency and Overall-cost. An effectiveness or E-score was obtained by calculating the conditional probabilities of the p-value and A-score within the given data set with their product equaling the effectiveness score (E-score). RESULTS: The E-score metric provided information about the utility of an element beyond an outcome-related p value ranking. E-scores for elements age-at-diagnosis, gender and tobacco-use showed utility above what their respective p values alone would indicate due to their relative ease of acquisition, that is, higher A-scores. Conversely, elements surgery-site, histologic-type and pathological-TNM stage were down-ranked in comparison to their p values based on lower A-scores caused by significantly higher acquisition costs. CONCLUSIONS: A novel metric termed E-score was developed which incorporates standard statistics with data quality metrics and was tested on elements from a large lung cohort. Results show that an element's underlying data quality is an important consideration in addition to p value correlation to outcome when determining the element's clinical or research utility in a study.