Cargando…
Computational analysis of LDDMM for brain mapping
One goal of computational anatomy (CA) is to develop tools to accurately segment brain structures in healthy and diseased subjects. In this paper, we examine the performance and complexity of such segmentation in the framework of the large deformation diffeomorphic metric mapping (LDDMM) registratio...
Autores principales: | Ceritoglu, Can, Tang, Xiaoying, Chow, Margaret, Hadjiabadi, Darian, Shah, Damish, Brown, Timothy, Burhanullah, Muhammad H., Trinh, Huong, Hsu, John T., Ament, Katarina A., Crocetti, Deana, Mori, Susumu, Mostofsky, Stewart H., Yantis, Steven, Miller, Michael I., Ratnanather, J. Tilak |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3753595/ https://www.ncbi.nlm.nih.gov/pubmed/23986653 http://dx.doi.org/10.3389/fnins.2013.00151 |
Ejemplares similares
-
Patient Specific Dosimetry Phantoms Using Multichannel LDDMM of the Whole Body
por: Tward, Daniel J., et al.
Publicado: (2011) -
Segmentation of brain magnetic resonance images based on multi-atlas likelihood fusion: testing using data with a broad range of anatomical and photometric profiles
por: Tang, Xiaoying, et al.
Publicado: (2015) -
Down‐sampling template curve to accelerate LDDMM‐curve with application to shape analysis of the corpus callosum
por: Huang, Weikai, et al.
Publicado: (2021) -
Large Deformation Diffeomorphic Metric Mapping Registration of Reconstructed 3D Histological Section Images and in vivo MR Images
por: Ceritoglu, Can, et al.
Publicado: (2010) -
Cerebellar gray matter and lobular volumes correlate with core autism symptoms
por: D'Mello, Anila M., et al.
Publicado: (2015)