Cargando…
HTCC-Modified Nanoclay for Tissue Engineering Applications: A Synergistic Cell Growth and Antibacterial Efficiency
This paper deals with the synthesis of a biocompatible chitosan ammonium salt N-(2-hydroxy) propyl-3-trimethylammonium chitosan chloride (HTCC) and using it in montmorillonite ion-exchange process. HTCC-modified montmorillonite (Mt) with different chemical ratios was successfully synthesized, and th...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3753741/ https://www.ncbi.nlm.nih.gov/pubmed/23998128 http://dx.doi.org/10.1155/2013/749240 |
_version_ | 1782281879774298112 |
---|---|
author | Aliabadi, Majid Dastjerdi, Roya Kabiri, Kourosh |
author_facet | Aliabadi, Majid Dastjerdi, Roya Kabiri, Kourosh |
author_sort | Aliabadi, Majid |
collection | PubMed |
description | This paper deals with the synthesis of a biocompatible chitosan ammonium salt N-(2-hydroxy) propyl-3-trimethylammonium chitosan chloride (HTCC) and using it in montmorillonite ion-exchange process. HTCC-modified montmorillonite (Mt) with different chemical ratios was successfully synthesized, and their characteristics have been verified by XRD and FTIR analyses. Produced samples have been evaluated in terms of antibacterial efficiency and biocompatibility (cell culture test). Antibacterial efficiency of synthesized HTCC/Mt samples has been confirmed against both gram negative bacteria (Escherichia coli) and gram positive bacteria (Staphylococcus aureus). The results disclosed that the antibacterial efficiency of HTCC-modified montmorillonite was unexpectedly even more than HTCC. This excellent synergistic effect has been referred to entrapping bacteria between the intercalated structures of HTCC-modified montmorillonite. Then HTCC on clay layers can seriously attack and damage the entrapped bacteria. An extraordinary biocompatibility, cell attachment, and cell growth even more than tissue culture polystyrene (TCPS) have been recorded in the case of this novel kind of modified clay. Due to existing concerns about serious and chronic infections after implant placement, this natural-based bioactive and antibacterial modified clay can be used in electrospun nanofibers and other polymeric implants with promising mechanical properties for tissue engineering applications. |
format | Online Article Text |
id | pubmed-3753741 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | Hindawi Publishing Corporation |
record_format | MEDLINE/PubMed |
spelling | pubmed-37537412013-09-01 HTCC-Modified Nanoclay for Tissue Engineering Applications: A Synergistic Cell Growth and Antibacterial Efficiency Aliabadi, Majid Dastjerdi, Roya Kabiri, Kourosh Biomed Res Int Research Article This paper deals with the synthesis of a biocompatible chitosan ammonium salt N-(2-hydroxy) propyl-3-trimethylammonium chitosan chloride (HTCC) and using it in montmorillonite ion-exchange process. HTCC-modified montmorillonite (Mt) with different chemical ratios was successfully synthesized, and their characteristics have been verified by XRD and FTIR analyses. Produced samples have been evaluated in terms of antibacterial efficiency and biocompatibility (cell culture test). Antibacterial efficiency of synthesized HTCC/Mt samples has been confirmed against both gram negative bacteria (Escherichia coli) and gram positive bacteria (Staphylococcus aureus). The results disclosed that the antibacterial efficiency of HTCC-modified montmorillonite was unexpectedly even more than HTCC. This excellent synergistic effect has been referred to entrapping bacteria between the intercalated structures of HTCC-modified montmorillonite. Then HTCC on clay layers can seriously attack and damage the entrapped bacteria. An extraordinary biocompatibility, cell attachment, and cell growth even more than tissue culture polystyrene (TCPS) have been recorded in the case of this novel kind of modified clay. Due to existing concerns about serious and chronic infections after implant placement, this natural-based bioactive and antibacterial modified clay can be used in electrospun nanofibers and other polymeric implants with promising mechanical properties for tissue engineering applications. Hindawi Publishing Corporation 2013 2013-08-12 /pmc/articles/PMC3753741/ /pubmed/23998128 http://dx.doi.org/10.1155/2013/749240 Text en Copyright © 2013 Majid Aliabadi et al. https://creativecommons.org/licenses/by/3.0/ This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Aliabadi, Majid Dastjerdi, Roya Kabiri, Kourosh HTCC-Modified Nanoclay for Tissue Engineering Applications: A Synergistic Cell Growth and Antibacterial Efficiency |
title | HTCC-Modified Nanoclay for Tissue Engineering Applications: A Synergistic Cell Growth and Antibacterial Efficiency |
title_full | HTCC-Modified Nanoclay for Tissue Engineering Applications: A Synergistic Cell Growth and Antibacterial Efficiency |
title_fullStr | HTCC-Modified Nanoclay for Tissue Engineering Applications: A Synergistic Cell Growth and Antibacterial Efficiency |
title_full_unstemmed | HTCC-Modified Nanoclay for Tissue Engineering Applications: A Synergistic Cell Growth and Antibacterial Efficiency |
title_short | HTCC-Modified Nanoclay for Tissue Engineering Applications: A Synergistic Cell Growth and Antibacterial Efficiency |
title_sort | htcc-modified nanoclay for tissue engineering applications: a synergistic cell growth and antibacterial efficiency |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3753741/ https://www.ncbi.nlm.nih.gov/pubmed/23998128 http://dx.doi.org/10.1155/2013/749240 |
work_keys_str_mv | AT aliabadimajid htccmodifiednanoclayfortissueengineeringapplicationsasynergisticcellgrowthandantibacterialefficiency AT dastjerdiroya htccmodifiednanoclayfortissueengineeringapplicationsasynergisticcellgrowthandantibacterialefficiency AT kabirikourosh htccmodifiednanoclayfortissueengineeringapplicationsasynergisticcellgrowthandantibacterialefficiency |