Cargando…
Transfer of metals from soil to vegetables and possible health risk assessment
Metal contamination in agricultural soils is of increasing concern due to food safety issues and potential health risks. Accumulation of Heavy and trace metals in vegetables occur by various sources but soil is considered the major one. Consumption of vegetables containing (heavy/trace) metals is on...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3755813/ https://www.ncbi.nlm.nih.gov/pubmed/24010043 http://dx.doi.org/10.1186/2193-1801-2-385 |
Sumario: | Metal contamination in agricultural soils is of increasing concern due to food safety issues and potential health risks. Accumulation of Heavy and trace metals in vegetables occur by various sources but soil is considered the major one. Consumption of vegetables containing (heavy/trace) metals is one of the main ways in which these elements enter the human body. Once entered, heavy metals are deposited in bone and fat tissues, overlapping noble minerals and cause an array of diseases. The present study aimed to investigate the concentration of different metals in agricultural soil and vegetables grown on those soils and to evaluate the possible health risks to human body through food chain transfer. Contamination levels in soils and vegetables with metals were measured and transfer factors (TF) from soil to vegetables and its health risk were calculated accordingly. Results showed that concentration of Si, Ba, K, Ca, Mg Fe, Sc, V, Cr, Cu, Zn, As, Mn, Co, Ni, Se, Sr, Mo, and Cd in soil is higher than the World Average value and Al, Ti and Pb is lower than the World Average value whereas concentration of toxic elements like As, Co, Cu, Mn, Pb, Se, Ni, V and Zn in vegetable samples are below the World Average value. The intake of toxic metals (Fe, Cu, Mn, Zn Co, Cr, V, Ni, Pb and Cd) from vegetables is not high and within the permissible limit recommended by WHO, Food & Nutritional Board and US EPA. The Hazard Quotient (HQ) for Fe, Cu, Co, Cr, V, Ni, Pb, Mn, Zn and Cd were calculated which showed a decreasing order of Cd>Mn>Zn>Pb>Cu>Fe>Ni>V=Co>Cr. Highest HQ value found for Cd (2.543) which is above the safe value. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/2193-1801-2-385) contains supplementary material, which is available to authorized users. |
---|