Cargando…

A Small Peptide with Therapeutic Potential for Inflammatory Acne Vulgaris

A designed peptide named LZ1 with 15 amino acid residues containing strong antimicrobial activity against bacteria pathogens of acne vulgaris including Propionibacterium acnes, Staphylococcus epidermidis and S. aureus. Especially, it exerted strong anti-P. acnes ability. The minimal inhibitory conce...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Zhiye, Mu, Lixian, Tang, Jing, Duan, Zilei, Wang, Fengyu, Wei, Lin, Rong, Mingqiang, Lai, Ren
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3755965/
https://www.ncbi.nlm.nih.gov/pubmed/24013774
http://dx.doi.org/10.1371/journal.pone.0072923
Descripción
Sumario:A designed peptide named LZ1 with 15 amino acid residues containing strong antimicrobial activity against bacteria pathogens of acne vulgaris including Propionibacterium acnes, Staphylococcus epidermidis and S. aureus. Especially, it exerted strong anti-P. acnes ability. The minimal inhibitory concentration against three strains of P. acnes was only 0.6 µg/ml, which is 4 times lower than that of clindamycin. In experimental mice skin colonization model, LZ1 significantly reduced the number of P. acnes colonized on the ear, P. acnes-induced ear swelling, and inflammatory cell infiltration. It ameliorated inflammation induced by P. acnes by inhibiting the secretion of inflammatory factors including tumor necrosis factor-α (TNF-α) and interleukin (IL)-1β. LZ1 showed little cytotoxicity on human keratinocyte and hemolytic activity on human blood red cells. Furthermore, LZ1 was very stable in human plasma. Combined with its potential bactericidal and anti-inflammatory properties, simple structure and high stability, LZ1 might be an ideal candidate for the treatment of acne.