Cargando…
A sequence labeling approach to link medications and their attributes in clinical notes and clinical trial announcements for information extraction
OBJECTIVE: The goal of this work was to evaluate machine learning methods, binary classification and sequence labeling, for medication–attribute linkage detection in two clinical corpora. DATA AND METHODS: We double annotated 3000 clinical trial announcements (CTA) and 1655 clinical notes (CN) for m...
Autores principales: | Li, Qi, Zhai, Haijun, Deleger, Louise, Lingren, Todd, Kaiser, Megan, Stoutenborough, Laura, Solti, Imre |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BMJ Publishing Group
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3756265/ https://www.ncbi.nlm.nih.gov/pubmed/23268488 http://dx.doi.org/10.1136/amiajnl-2012-001487 |
Ejemplares similares
-
Evaluating the impact of pre-annotation on annotation speed and potential bias: natural language processing gold standard development for clinical named entity recognition in clinical trial announcements
por: Lingren, Todd, et al.
Publicado: (2014) -
Web 2.0-Based Crowdsourcing for High-Quality Gold Standard Development in Clinical Natural Language Processing
por: Zhai, Haijun, et al.
Publicado: (2013) -
Mining FDA drug labels for medical conditions
por: Li, Qi, et al.
Publicado: (2013) -
Large-scale evaluation of automated clinical note de-identification and its impact on information extraction
por: Deleger, Louise, et al.
Publicado: (2013) -
Developing and evaluating an automated appendicitis risk stratification algorithm for pediatric patients in the emergency department
por: Deleger, Louise, et al.
Publicado: (2013)