Cargando…
Clinical Utility of Machine-Learning Approaches in Schizophrenia: Improving Diagnostic Confidence for Translational Neuroimaging
Machine-learning approaches are becoming commonplace in the neuroimaging literature as potential diagnostic and prognostic tools for the study of clinical populations. However, very few studies provide clinically informative measures to aid in decision-making and resource allocation. Head-to-head co...
Autores principales: | Iwabuchi, Sarina J., Liddle, Peter F., Palaniyappan, Lena |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3756305/ https://www.ncbi.nlm.nih.gov/pubmed/24009589 http://dx.doi.org/10.3389/fpsyt.2013.00095 |
Ejemplares similares
-
Cortical folding and the potential for prognostic neuroimaging in schizophrenia
por: Guo, Shuixia, et al.
Publicado: (2015) -
Ultra-high field neuroimaging in psychosis: A narrative review
por: Lavigne, Katie M., et al.
Publicado: (2022) -
Prognostic Utility of Multivariate Morphometry in Schizophrenia
por: Li, Mingli, et al.
Publicado: (2019) -
Editorial: Third-Generation Neuroimaging: Translating Research into Clinical Utility
por: Schmidt, André, et al.
Publicado: (2016) -
Neurovascular Uncoupling in Schizophrenia: A Bimodal Meta-Analysis of Brain Perfusion and Glucose Metabolism
por: Sukumar, Niron, et al.
Publicado: (2020)