Cargando…
Independent Component Analysis for Brain fMRI Does Indeed Select for Maximal Independence
A recent paper by Daubechies et al. claims that two independent component analysis (ICA) algorithms, Infomax and FastICA, which are widely used for functional magnetic resonance imaging (fMRI) analysis, select for sparsity rather than independence. The argument was supported by a series of experimen...
Autores principales: | Calhoun, Vince D., Potluru, Vamsi K., Phlypo, Ronald, Silva, Rogers F., Pearlmutter, Barak A., Caprihan, Arvind, Plis, Sergey M., Adalı, Tülay |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3757003/ https://www.ncbi.nlm.nih.gov/pubmed/24009746 http://dx.doi.org/10.1371/journal.pone.0073309 |
Ejemplares similares
-
Correction: Independent Component Analysis for Brain fMRI Does Indeed Select for Maximal Independence
por: Calhoun, Vince D., et al.
Publicado: (2013) -
A Feature-Selective Independent Component Analysis Method for Functional MRI
por: Li, Yi-Ou, et al.
Publicado: (2007) -
Multimodal subspace independent vector analysis captures latent subspace structures in large multimodal neuroimaging studies
por: Li, Xinhui, et al.
Publicado: (2023) -
A Scalable Approach to Independent Vector Analysis by Shared Subspace Separation for Multi-Subject fMRI Analysis
por: Sun, Mingyu, et al.
Publicado: (2023) -
A Robust Classifier to Distinguish Noise from fMRI Independent Components
por: Sochat, Vanessa, et al.
Publicado: (2014)