Cargando…
Sparse Coding Models Can Exhibit Decreasing Sparseness while Learning Sparse Codes for Natural Images
The sparse coding hypothesis has enjoyed much success in predicting response properties of simple cells in primary visual cortex (V1) based solely on the statistics of natural scenes. In typical sparse coding models, model neuron activities and receptive fields are optimized to accurately represent...
Autores principales: | Zylberberg, Joel, DeWeese, Michael Robert |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3757070/ https://www.ncbi.nlm.nih.gov/pubmed/24009489 http://dx.doi.org/10.1371/journal.pcbi.1003182 |
Ejemplares similares
-
Inhibitory interneurons enable sparse code formation in a spiking circuit model of V1
por: King, Paul D, et al.
Publicado: (2012) -
On the Sparse Structure of Natural Sounds and Natural Images: Similarities, Differences, and Implications for Neural Coding
por: Dodds, Eric McVoy, et al.
Publicado: (2019) -
A Sparse Coding Model with Synaptically Local Plasticity and Spiking Neurons Can Account for the Diverse Shapes of V1 Simple Cell Receptive Fields
por: Zylberberg, Joel, et al.
Publicado: (2011) -
Sparse Codes for Speech Predict Spectrotemporal Receptive Fields in the Inferior Colliculus
por: Carlson, Nicole L., et al.
Publicado: (2012) -
Fast Sparse Coding for Range Data Denoising with Sparse Ridges Constraint
por: Gao, Zhi, et al.
Publicado: (2018)