Cargando…

Antidepressant-like effect of novel 5-HT3 receptor antagonist N-n-butyl-3-ethoxyquinoxalin-2-carboxamide (6p): An approach using rodent behavioral antidepressant tests

OBJECTIVE: The present study was designed to investigate the antidepressant potential of N-n-butyl-3-ethoxyquinoxalin-2-carboxamide (6p), a novel 5-HT(3) receptor antagonist in rodent behavioral models of depression. MATERIALS AND METHODS: The compound 6p was examined in various behavioral models li...

Descripción completa

Detalles Bibliográficos
Autores principales: Bhatt, Shvetank, Mahesh, Radhakrishnan, Devadoss, Thangaraj, Jindal, Ankur Kumar
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Medknow Publications & Media Pvt Ltd 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3757602/
https://www.ncbi.nlm.nih.gov/pubmed/24014909
http://dx.doi.org/10.4103/0253-7613.115014
Descripción
Sumario:OBJECTIVE: The present study was designed to investigate the antidepressant potential of N-n-butyl-3-ethoxyquinoxalin-2-carboxamide (6p), a novel 5-HT(3) receptor antagonist in rodent behavioral models of depression. MATERIALS AND METHODS: The compound 6p was examined in various behavioral models like forced swim test (FST), tail suspension test (TST), mechanistic models [5-hydroxytryptophan (5-HTP)-induced head twitch and reserpine-induced hypothermia (RIH)], and in chronic surgery model-olfactory bulbectomy in rats. RESULTS: Compound 6p (1, 2, and 4 mg/kg, i.p.) exhibited antidepressant-like effect in FST and TST after acute treatment without having an effect on baseline locomotor activity. Moreover, 6p (2 mg/kg, i.p.), potentiated the 5-HTP–induced head twitch responses in mice and inhibited the RIH in rats. Chronic treatment (14 days) with 6p (1 and 2 mg/kg, p.o.) and paroxetine (10 mg/kg, p.o.) in rats significantly reversed the behavioral anomalies induced by bilateral olfactory bulbectomy using open field exploration. CONCLUSION: The preliminary studies reveal that compound 6p exhibits antidepressant-like effect in behavioral rodent models of depression.