Cargando…

Estimating a Markovian Epidemic Model Using Household Serial Interval Data from the Early Phase of an Epidemic

The clinical serial interval of an infectious disease is the time between date of symptom onset in an index case and the date of symptom onset in one of its secondary cases. It is a quantity which is commonly collected during a pandemic and is of fundamental importance to public health policy and ma...

Descripción completa

Detalles Bibliográficos
Autores principales: Black, Andrew J., Ross, Joshua V.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3758268/
https://www.ncbi.nlm.nih.gov/pubmed/24023679
http://dx.doi.org/10.1371/journal.pone.0073420
Descripción
Sumario:The clinical serial interval of an infectious disease is the time between date of symptom onset in an index case and the date of symptom onset in one of its secondary cases. It is a quantity which is commonly collected during a pandemic and is of fundamental importance to public health policy and mathematical modelling. In this paper we present a novel method for calculating the serial interval distribution for a Markovian model of household transmission dynamics. This allows the use of Bayesian MCMC methods, with explicit evaluation of the likelihood, to fit to serial interval data and infer parameters of the underlying model. We use simulated and real data to verify the accuracy of our methodology and illustrate the importance of accounting for household size. The output of our approach can be used to produce posterior distributions of population level epidemic characteristics.