Cargando…
Leukemia Prediction Using Sparse Logistic Regression
We describe a supervised prediction method for diagnosis of acute myeloid leukemia (AML) from patient samples based on flow cytometry measurements. We use a data driven approach with machine learning methods to train a computational model that takes in flow cytometry measurements from a single patie...
Autores principales: | Manninen, Tapio, Huttunen, Heikki, Ruusuvuori, Pekka, Nykter, Matti |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3758279/ https://www.ncbi.nlm.nih.gov/pubmed/24023658 http://dx.doi.org/10.1371/journal.pone.0072932 |
Ejemplares similares
-
Feature-based analysis of mouse prostatic intraepithelial neoplasia in histological tissue sections
por: Ruusuvuori, Pekka, et al.
Publicado: (2016) -
Analysis of spatial heterogeneity in normal epithelium and preneoplastic alterations in mouse prostate tumor models
por: Valkonen, Mira, et al.
Publicado: (2017) -
Comparative analysis of tissue reconstruction algorithms for 3D histology
por: Kartasalo, Kimmo, et al.
Publicado: (2018) -
Spatial analysis of histology in 3D: quantification and visualization of organ and tumor level tissue environment
por: Ruusuvuori, Pekka, et al.
Publicado: (2022) -
Sparse Ordinal Logistic Regression and Its Application to Brain Decoding
por: Satake, Emi, et al.
Publicado: (2018)