Cargando…

An Analytic Study on the Effect of Alginate on the Velocity Profiles of Blood in Rectangular Microchannels Using Microparticle Image Velocimetry

It is desired to understand the effect of alginic acid sodium salt from brown algae (alginate) as a viscosity modifier on the behavior of blood in vitro using a micro-particle image velocimetry (µPIV) system. The effect of alginate on the shape of the velocity profile, the flow rate and the maximum...

Descripción completa

Detalles Bibliográficos
Autores principales: Pitts, Katie L., Fenech, Marianne
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3758353/
https://www.ncbi.nlm.nih.gov/pubmed/24023655
http://dx.doi.org/10.1371/journal.pone.0072909
Descripción
Sumario:It is desired to understand the effect of alginic acid sodium salt from brown algae (alginate) as a viscosity modifier on the behavior of blood in vitro using a micro-particle image velocimetry (µPIV) system. The effect of alginate on the shape of the velocity profile, the flow rate and the maximum velocity achieved in rectangular microchannels channels are measured. The channels were constructed of polydimethylsiloxane (PDMS), a biocompatible silicone. Porcine blood cells suspended in saline was used as the working fluid at twenty percent hematocrit (H = 20). While alginate was only found to have minimal effect on the maximum velocity and the flow rate achieved, it was found to significantly affect the shear rate at the wall by between eight to a hundred percent.