Cargando…
Model-Based Reinforcement of Kinect Depth Data for Human Motion Capture Applications
Motion capture systems have recently experienced a strong evolution. New cheap depth sensors and open source frameworks, such as OpenNI, allow for perceiving human motion on-line without using invasive systems. However, these proposals do not evaluate the validity of the obtained poses. This paper a...
Autores principales: | Calderita, Luis Vicente, Bandera, Juan Pedro, Bustos, Pablo, Skiadopoulos, Andreas |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3758625/ https://www.ncbi.nlm.nih.gov/pubmed/23845933 http://dx.doi.org/10.3390/s130708835 |
Ejemplares similares
-
Emotion recognition using Kinect motion capture data of human gaits
por: Li, Shun, et al.
Publicado: (2016) -
Accuracy and Resolution of Kinect Depth Data for Indoor Mapping Applications
por: Khoshelham, Kourosh, et al.
Publicado: (2012) -
Leveraging Two Kinect Sensors for Accurate Full-Body Motion Capture
por: Gao, Zhiquan, et al.
Publicado: (2015) -
Validation of enhanced kinect sensor based motion capturing for gait assessment
por: Müller, Björn, et al.
Publicado: (2017) -
THERAPIST: Towards an Autonomous Socially Interactive Robot for Motor and Neurorehabilitation Therapies for Children
por: Calderita, Luis Vicente, et al.
Publicado: (2014)