Cargando…
Real-Time EEG-Based Happiness Detection System
We propose to use real-time EEG signal to classify happy and unhappy emotions elicited by pictures and classical music. We use PSD as a feature and SVM as a classifier. The average accuracies of subject-dependent model and subject-independent model are approximately 75.62% and 65.12%, respectively....
Autores principales: | Jatupaiboon, Noppadon, Pan-ngum, Setha, Israsena, Pasin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3759272/ https://www.ncbi.nlm.nih.gov/pubmed/24023532 http://dx.doi.org/10.1155/2013/618649 |
Ejemplares similares
-
A CNN-Based Deep Learning Approach for SSVEP Detection Targeting Binaural Ear-EEG
por: Israsena, Pasin, et al.
Publicado: (2022) -
Comparison of EEG measurement of upper limb movement in motor imagery training system
por: Suwannarat, Arpa, et al.
Publicado: (2018) -
EEG-Based Emotion Recognition Using Deep Learning Network with Principal Component Based Covariate Shift Adaptation
por: Jirayucharoensak, Suwicha, et al.
Publicado: (2014) -
A Wearable In-Ear EEG Device for Emotion Monitoring
por: Athavipach, Chanavit, et al.
Publicado: (2019) -
Automatic Speech Discrimination Assessment Methods Based on Event-Related Potentials (ERP)
por: Charuthamrong, Pimwipa, et al.
Publicado: (2022)