Cargando…
Targeting Mutant p53 by a SIRT1 Activator YK-3-237 Inhibits the Proliferation of Triple-Negative Breast Cancer Cells
Many types of mutations in tumor suppressor p53 are oncogenic through gain-of-function. Therefore, targeting mutant p53 (mtp53) is a promising therapeutic approach to fight against many types of cancers. We report here a small molecule compound YK-3-237 that reduces acetylation of mtp53 and exhibits...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Impact Journals LLC
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3759676/ https://www.ncbi.nlm.nih.gov/pubmed/23846322 |
Sumario: | Many types of mutations in tumor suppressor p53 are oncogenic through gain-of-function. Therefore, targeting mutant p53 (mtp53) is a promising therapeutic approach to fight against many types of cancers. We report here a small molecule compound YK-3-237 that reduces acetylation of mtp53 and exhibits anti-proliferative effects toward triple-negative breast cancer (TNBC) cells carrying mtp53. YK-3-237 activates SIRT1 enzyme activities in vitro and deacetylation of both mtp53 and wild type p53 (WTp53) in a SIRT1-dependent manner. Deacetylation of mtp53 resulted in depletion of mtp53 protein level and up-regulated the expression of WTp53-target genes, PUMA and NOXA. YK-3-237 also induces PARP-dependent apoptotic cell death and arrests the cell cycle at G2/M phase in mtp53 TNBC cells. Taken together, our data suggest that targeting acetylation of mtp53 is a potential target to treat human cancers. |
---|