Cargando…
The evolution of genome-scale models of cancer metabolism
The importance of metabolism in cancer is becoming increasingly apparent with the identification of metabolic enzyme mutations and the growing awareness of the influence of metabolism on signaling, epigenetic markers, and transcription. However, the complexity of these processes has challenged our a...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3759783/ https://www.ncbi.nlm.nih.gov/pubmed/24027532 http://dx.doi.org/10.3389/fphys.2013.00237 |
_version_ | 1782282684403286016 |
---|---|
author | Lewis, Nathan E. Abdel-Haleem, Alyaa M. |
author_facet | Lewis, Nathan E. Abdel-Haleem, Alyaa M. |
author_sort | Lewis, Nathan E. |
collection | PubMed |
description | The importance of metabolism in cancer is becoming increasingly apparent with the identification of metabolic enzyme mutations and the growing awareness of the influence of metabolism on signaling, epigenetic markers, and transcription. However, the complexity of these processes has challenged our ability to make sense of the metabolic changes in cancer. Fortunately, constraint-based modeling, a systems biology approach, now enables one to study the entirety of cancer metabolism and simulate basic phenotypes. With the newness of this field, there has been a rapid evolution of both the scope of these models and their applications. Here we review the various constraint-based models built for cancer metabolism and how their predictions are shedding new light on basic cancer phenotypes, elucidating pathway differences between tumors, and dicovering putative anti-cancer targets. As the field continues to evolve, the scope of these genome-scale cancer models must expand beyond central metabolism to address questions related to the diverse processes contributing to tumor development and metastasis. |
format | Online Article Text |
id | pubmed-3759783 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-37597832013-09-11 The evolution of genome-scale models of cancer metabolism Lewis, Nathan E. Abdel-Haleem, Alyaa M. Front Physiol Physiology The importance of metabolism in cancer is becoming increasingly apparent with the identification of metabolic enzyme mutations and the growing awareness of the influence of metabolism on signaling, epigenetic markers, and transcription. However, the complexity of these processes has challenged our ability to make sense of the metabolic changes in cancer. Fortunately, constraint-based modeling, a systems biology approach, now enables one to study the entirety of cancer metabolism and simulate basic phenotypes. With the newness of this field, there has been a rapid evolution of both the scope of these models and their applications. Here we review the various constraint-based models built for cancer metabolism and how their predictions are shedding new light on basic cancer phenotypes, elucidating pathway differences between tumors, and dicovering putative anti-cancer targets. As the field continues to evolve, the scope of these genome-scale cancer models must expand beyond central metabolism to address questions related to the diverse processes contributing to tumor development and metastasis. Frontiers Media S.A. 2013-09-03 /pmc/articles/PMC3759783/ /pubmed/24027532 http://dx.doi.org/10.3389/fphys.2013.00237 Text en Copyright © 2013 Lewis and Abdel-Haleem. http://creativecommons.org/licenses/by/3.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Physiology Lewis, Nathan E. Abdel-Haleem, Alyaa M. The evolution of genome-scale models of cancer metabolism |
title | The evolution of genome-scale models of cancer metabolism |
title_full | The evolution of genome-scale models of cancer metabolism |
title_fullStr | The evolution of genome-scale models of cancer metabolism |
title_full_unstemmed | The evolution of genome-scale models of cancer metabolism |
title_short | The evolution of genome-scale models of cancer metabolism |
title_sort | evolution of genome-scale models of cancer metabolism |
topic | Physiology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3759783/ https://www.ncbi.nlm.nih.gov/pubmed/24027532 http://dx.doi.org/10.3389/fphys.2013.00237 |
work_keys_str_mv | AT lewisnathane theevolutionofgenomescalemodelsofcancermetabolism AT abdelhaleemalyaam theevolutionofgenomescalemodelsofcancermetabolism AT lewisnathane evolutionofgenomescalemodelsofcancermetabolism AT abdelhaleemalyaam evolutionofgenomescalemodelsofcancermetabolism |