Cargando…

On the growth mode of two-lobed curvilinear graphene domains at atmospheric pressure

We demonstrate the chemical vapor deposition (CVD) growth of 2-lobed symmetrical curvilinear graphene domains specifically on Cu{100} surface orientations at atmospheric pressure. We utilize electron backscattered diffraction, scanning electron microscopy and Raman spectroscopy to determine an as-ye...

Descripción completa

Detalles Bibliográficos
Autores principales: Kumar, Kitu, Yang, Eui-Hyeok
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3759841/
https://www.ncbi.nlm.nih.gov/pubmed/23999168
http://dx.doi.org/10.1038/srep02571
Descripción
Sumario:We demonstrate the chemical vapor deposition (CVD) growth of 2-lobed symmetrical curvilinear graphene domains specifically on Cu{100} surface orientations at atmospheric pressure. We utilize electron backscattered diffraction, scanning electron microscopy and Raman spectroscopy to determine an as-yet unexplored growth mode producing such a shape and demonstrate how its growth and morphology are dependent on the underlying Cu crystal structure especially in the high CH(4):H(2) regime. We show that both monolayer and bilayer curvilinear domains are grown on Cu{100} surfaces; furthermore, we show that characteristic atmospheric pressure CVD hexagonal domains are grown on all other Cu facets with an isotropic growth rate which is more rapid than that on Cu{100}. These findings indicate that the Cu-graphene complex is predominant mechanistically at atmospheric pressure, which is an important step towards tailoring graphene properties via substrate engineering.