Cargando…
Alterations in gene expression in Caenorhabditis elegans associated with organophosphate pesticide intoxication and recovery
BACKGROUND: The principal toxicity of acute organophosphate (OP) pesticide poisoning is the disruption of neurotransmission through inhibition of acetylcholinesterase (AChE). However, other mechanisms leading to persistent effects and neurodegeneration remain controversial and difficult to detect. B...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3760450/ https://www.ncbi.nlm.nih.gov/pubmed/23631360 http://dx.doi.org/10.1186/1471-2164-14-291 |
_version_ | 1782282769726963712 |
---|---|
author | Lewis, John A Gehman, Elizabeth A Baer, Christine E Jackson, David A |
author_facet | Lewis, John A Gehman, Elizabeth A Baer, Christine E Jackson, David A |
author_sort | Lewis, John A |
collection | PubMed |
description | BACKGROUND: The principal toxicity of acute organophosphate (OP) pesticide poisoning is the disruption of neurotransmission through inhibition of acetylcholinesterase (AChE). However, other mechanisms leading to persistent effects and neurodegeneration remain controversial and difficult to detect. Because Caenorhabditis elegans is relatively resistant to OP lethality—particularly through the inhibition of AChE—studies in this nematode provide an opportunity to observe alterations in global gene expression following OP exposure that cannot be readily observed in less resistant organisms. RESULTS: We exposed cultures of worms in axenic, defined medium to dichlorvos under three exposure protocols. In the first, worms were exposed continuously throughout the experiment. In the second and third, the worms were exposed for either 2 or 8 h, the dichlorvos was washed out of the culture, and the worms were allowed to recover. We then analyzed gene expression using whole genome microarrays from RNA obtained from worms sampled at multiple time points throughout the exposure. The worms showed a time-dependent increase in the expression of genes involved in stress responses. Early in the exposure, the predominant effect was on metabolic processes, while at later times, an immune-like response and cellular repair mechanisms dominated the expression pattern. Following removal of dichlorvos, the gene expression in the worms appeared to relatively rapidly return to steady-state levels. CONCLUSION: The changes in gene expression observed in the worms following exposure to dichlorvos point towards two potential mechanisms of toxicity: inhibition of AChE and mitochondrial disruption. |
format | Online Article Text |
id | pubmed-3760450 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-37604502013-09-04 Alterations in gene expression in Caenorhabditis elegans associated with organophosphate pesticide intoxication and recovery Lewis, John A Gehman, Elizabeth A Baer, Christine E Jackson, David A BMC Genomics Research Article BACKGROUND: The principal toxicity of acute organophosphate (OP) pesticide poisoning is the disruption of neurotransmission through inhibition of acetylcholinesterase (AChE). However, other mechanisms leading to persistent effects and neurodegeneration remain controversial and difficult to detect. Because Caenorhabditis elegans is relatively resistant to OP lethality—particularly through the inhibition of AChE—studies in this nematode provide an opportunity to observe alterations in global gene expression following OP exposure that cannot be readily observed in less resistant organisms. RESULTS: We exposed cultures of worms in axenic, defined medium to dichlorvos under three exposure protocols. In the first, worms were exposed continuously throughout the experiment. In the second and third, the worms were exposed for either 2 or 8 h, the dichlorvos was washed out of the culture, and the worms were allowed to recover. We then analyzed gene expression using whole genome microarrays from RNA obtained from worms sampled at multiple time points throughout the exposure. The worms showed a time-dependent increase in the expression of genes involved in stress responses. Early in the exposure, the predominant effect was on metabolic processes, while at later times, an immune-like response and cellular repair mechanisms dominated the expression pattern. Following removal of dichlorvos, the gene expression in the worms appeared to relatively rapidly return to steady-state levels. CONCLUSION: The changes in gene expression observed in the worms following exposure to dichlorvos point towards two potential mechanisms of toxicity: inhibition of AChE and mitochondrial disruption. BioMed Central 2013-04-30 /pmc/articles/PMC3760450/ /pubmed/23631360 http://dx.doi.org/10.1186/1471-2164-14-291 Text en Copyright © 2013 Lewis et al.; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Lewis, John A Gehman, Elizabeth A Baer, Christine E Jackson, David A Alterations in gene expression in Caenorhabditis elegans associated with organophosphate pesticide intoxication and recovery |
title | Alterations in gene expression in Caenorhabditis elegans associated with organophosphate pesticide intoxication and recovery |
title_full | Alterations in gene expression in Caenorhabditis elegans associated with organophosphate pesticide intoxication and recovery |
title_fullStr | Alterations in gene expression in Caenorhabditis elegans associated with organophosphate pesticide intoxication and recovery |
title_full_unstemmed | Alterations in gene expression in Caenorhabditis elegans associated with organophosphate pesticide intoxication and recovery |
title_short | Alterations in gene expression in Caenorhabditis elegans associated with organophosphate pesticide intoxication and recovery |
title_sort | alterations in gene expression in caenorhabditis elegans associated with organophosphate pesticide intoxication and recovery |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3760450/ https://www.ncbi.nlm.nih.gov/pubmed/23631360 http://dx.doi.org/10.1186/1471-2164-14-291 |
work_keys_str_mv | AT lewisjohna alterationsingeneexpressionincaenorhabditiselegansassociatedwithorganophosphatepesticideintoxicationandrecovery AT gehmanelizabetha alterationsingeneexpressionincaenorhabditiselegansassociatedwithorganophosphatepesticideintoxicationandrecovery AT baerchristinee alterationsingeneexpressionincaenorhabditiselegansassociatedwithorganophosphatepesticideintoxicationandrecovery AT jacksondavida alterationsingeneexpressionincaenorhabditiselegansassociatedwithorganophosphatepesticideintoxicationandrecovery |