Cargando…
Hevea brasiliensis cell suspension peroxidase: purification, characterization and application for dye decolorization
Peroxidases are oxidoreductase enzymes produced by most organisms. In this study, a peroxidase was purified from Hevea brasiliensis cell suspension by using anion exchange chromatography (DEAE-Sepharose), affinity chromatography (Con A-agarose) and preparative SDS-PAGE. The obtained enzyme appeared...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3760453/ https://www.ncbi.nlm.nih.gov/pubmed/23402438 http://dx.doi.org/10.1186/2191-0855-3-14 |
Sumario: | Peroxidases are oxidoreductase enzymes produced by most organisms. In this study, a peroxidase was purified from Hevea brasiliensis cell suspension by using anion exchange chromatography (DEAE-Sepharose), affinity chromatography (Con A-agarose) and preparative SDS-PAGE. The obtained enzyme appeared as a single band on SDS-PAGE with molecular mass of 70 kDa. Surprisingly, this purified peroxidase also had polyphenol oxidase activity. However, the biochemical characteristics were only studied in term of peroxidase because similar experiments in term of polyphenol oxidase have been reported in our pervious publication. The optimal pH of the purified peroxidase was 5.0 and its activity was retained at pH values between 5.0–10.0. The enzyme was heat stable over a wide range of temperatures (0–60°C), and less than 50% of its activity was lost at 70°C after incubation for 30 min. The enzyme was completely inhibited by β-mercaptoethanol and strongly inhibited by NaN(3); in addition, its properties indicated that it was a heme containing glycoprotein. This peroxidase could decolorize many dyes; aniline blue, bromocresol purple, brilliant green, crystal violet, fuchsin, malachite green, methyl green, methyl violet and water blue. The stability against high temperature and extreme pH supported that the enzyme could be a potential peroxidase source for special industrial applications. |
---|