Cargando…

Diffusion Weighted Image Denoising Using Overcomplete Local PCA

Diffusion Weighted Images (DWI) normally shows a low Signal to Noise Ratio (SNR) due to the presence of noise from the measurement process that complicates and biases the estimation of quantitative diffusion parameters. In this paper, a new denoising methodology is proposed that takes into considera...

Descripción completa

Detalles Bibliográficos
Autores principales: Manjón, José V., Coupé, Pierrick, Concha, Luis, Buades, Antonio, Collins, D. Louis, Robles, Montserrat
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3760829/
https://www.ncbi.nlm.nih.gov/pubmed/24019889
http://dx.doi.org/10.1371/journal.pone.0073021
_version_ 1782282797911638016
author Manjón, José V.
Coupé, Pierrick
Concha, Luis
Buades, Antonio
Collins, D. Louis
Robles, Montserrat
author_facet Manjón, José V.
Coupé, Pierrick
Concha, Luis
Buades, Antonio
Collins, D. Louis
Robles, Montserrat
author_sort Manjón, José V.
collection PubMed
description Diffusion Weighted Images (DWI) normally shows a low Signal to Noise Ratio (SNR) due to the presence of noise from the measurement process that complicates and biases the estimation of quantitative diffusion parameters. In this paper, a new denoising methodology is proposed that takes into consideration the multicomponent nature of multi-directional DWI datasets such as those employed in diffusion imaging. This new filter reduces random noise in multicomponent DWI by locally shrinking less significant Principal Components using an overcomplete approach. The proposed method is compared with state-of-the-art methods using synthetic and real clinical MR images, showing improved performance in terms of denoising quality and estimation of diffusion parameters.
format Online
Article
Text
id pubmed-3760829
institution National Center for Biotechnology Information
language English
publishDate 2013
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-37608292013-09-09 Diffusion Weighted Image Denoising Using Overcomplete Local PCA Manjón, José V. Coupé, Pierrick Concha, Luis Buades, Antonio Collins, D. Louis Robles, Montserrat PLoS One Research Article Diffusion Weighted Images (DWI) normally shows a low Signal to Noise Ratio (SNR) due to the presence of noise from the measurement process that complicates and biases the estimation of quantitative diffusion parameters. In this paper, a new denoising methodology is proposed that takes into consideration the multicomponent nature of multi-directional DWI datasets such as those employed in diffusion imaging. This new filter reduces random noise in multicomponent DWI by locally shrinking less significant Principal Components using an overcomplete approach. The proposed method is compared with state-of-the-art methods using synthetic and real clinical MR images, showing improved performance in terms of denoising quality and estimation of diffusion parameters. Public Library of Science 2013-09-03 /pmc/articles/PMC3760829/ /pubmed/24019889 http://dx.doi.org/10.1371/journal.pone.0073021 Text en © 2013 Manjon et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited.
spellingShingle Research Article
Manjón, José V.
Coupé, Pierrick
Concha, Luis
Buades, Antonio
Collins, D. Louis
Robles, Montserrat
Diffusion Weighted Image Denoising Using Overcomplete Local PCA
title Diffusion Weighted Image Denoising Using Overcomplete Local PCA
title_full Diffusion Weighted Image Denoising Using Overcomplete Local PCA
title_fullStr Diffusion Weighted Image Denoising Using Overcomplete Local PCA
title_full_unstemmed Diffusion Weighted Image Denoising Using Overcomplete Local PCA
title_short Diffusion Weighted Image Denoising Using Overcomplete Local PCA
title_sort diffusion weighted image denoising using overcomplete local pca
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3760829/
https://www.ncbi.nlm.nih.gov/pubmed/24019889
http://dx.doi.org/10.1371/journal.pone.0073021
work_keys_str_mv AT manjonjosev diffusionweightedimagedenoisingusingovercompletelocalpca
AT coupepierrick diffusionweightedimagedenoisingusingovercompletelocalpca
AT conchaluis diffusionweightedimagedenoisingusingovercompletelocalpca
AT buadesantonio diffusionweightedimagedenoisingusingovercompletelocalpca
AT collinsdlouis diffusionweightedimagedenoisingusingovercompletelocalpca
AT roblesmontserrat diffusionweightedimagedenoisingusingovercompletelocalpca