Cargando…
Solutions of a Linearized Mathematical Model for Capillary Formation in Tumor Angiogenesis: An Initial Data Perturbation Approximation
We present a mathematical model for capillary formation in tumor angiogenesis and solve it by linearizing it using an initial data perturbation method. This method is highly effective to obtain solutions of nonlinear coupled differential equations. We also provide a specific example resulting, that...
Autor principal: | Pamuk, Serdal |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3762161/ https://www.ncbi.nlm.nih.gov/pubmed/24027602 http://dx.doi.org/10.1155/2013/789402 |
Ejemplares similares
-
Construction of approximative and almost periodic solutions of perturbed linear Schrödinger and wave equations
por: Bourgain, J
Publicado: (1995) -
Solution of Linear Integral Equations using Padé Approximants
por: Chisholm, J S R
Publicado: (1963) -
Homotopic Approximate Solutions for the Perturbed CKdV Equation with Variable Coefficients
por: Lu, Dianchen, et al.
Publicado: (2014) -
Adaptive initial step size selection for Simultaneous Perturbation Stochastic Approximation
por: Ito, Keiichi, et al.
Publicado: (2016) -
Mathematics of Approximation
por: de Villiers, Johan
Publicado: (2012)