Cargando…

Comparison of Metabolic Capacities and Inference of Gene Content Evolution in Mosquito-Associated Spiroplasma diminutum and S. taiwanense

Mosquitoes are hosts of several Spiroplasma species that belong to different serogroups. To investigate the genetic mechanisms that may be involved in the utilization of similar hosts in these phylogenetically distinct bacteria, we determined the complete genome sequences of Spiroplasma diminutum an...

Descripción completa

Detalles Bibliográficos
Autores principales: Lo, Wen-Sui, Ku, Chuan, Chen, Ling-Ling, Chang, Tean-Hsu, Kuo, Chih-Horng
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3762197/
https://www.ncbi.nlm.nih.gov/pubmed/23873917
http://dx.doi.org/10.1093/gbe/evt108
Descripción
Sumario:Mosquitoes are hosts of several Spiroplasma species that belong to different serogroups. To investigate the genetic mechanisms that may be involved in the utilization of similar hosts in these phylogenetically distinct bacteria, we determined the complete genome sequences of Spiroplasma diminutum and S. taiwanense for comparative analysis. The genome alignment indicates that their chromosomal organization is highly conserved, which is in sharp contrast to the elevated genome instabilities observed in other Spiroplasma lineages. Examination of the substrate utilization strategies revealed that S. diminutum can use a wide range of carbohydrates, suggesting that it is well suited to living in the gut (and possibly the circulatory system) of its mosquito hosts. In comparison, S. taiwanense has lost several carbohydrate utilization genes and acquired additional sets of oligopeptide transporter genes through tandem duplications, suggesting that proteins from digested blood meal or lysed host cells may be an important nutrient source. Moreover, one glycerol-3-phosphate oxidase gene (glpO) was found in S. taiwanense but not S. diminutum. This gene is linked to the production of reactive oxygen species and has been shown to be a major virulence factor in Mycoplasma mycoides. This finding may explain the pathogenicity of S. taiwanense observed in previous artificial infection experiments, while no apparent effect was found for S. diminutum. To infer the gene content evolution at deeper divergence levels, we incorporated other Mollicutes genomes for comparative analyses. The results suggest that the losses of biosynthetic pathways are a recurrent theme in these host-associated bacteria.