Cargando…
Plant Cell Wall Polysaccharides as Potential Resources for the Development of Novel Prebiotics
Prebiotic oligosaccharides, with a degree of polymerization (DP) of mostly less than 10, exhibit diverse biological activities that contribute to human health. Currently available prebiotics are mostly derived from disaccharides and simple polysaccharides found in plants. Subtle differences in the s...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Korean Society of Applied Pharmacology
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3762269/ https://www.ncbi.nlm.nih.gov/pubmed/24009823 http://dx.doi.org/10.4062/biomolther.2012.20.4.371 |
_version_ | 1782282894807400448 |
---|---|
author | Yoo, Hye-Dong Kim, Dojung Paek, Seung-Ho |
author_facet | Yoo, Hye-Dong Kim, Dojung Paek, Seung-Ho |
author_sort | Yoo, Hye-Dong |
collection | PubMed |
description | Prebiotic oligosaccharides, with a degree of polymerization (DP) of mostly less than 10, exhibit diverse biological activities that contribute to human health. Currently available prebiotics are mostly derived from disaccharides and simple polysaccharides found in plants. Subtle differences in the structures of oligosaccharides can cause significant differences in their prebiotic proper-ties. Therefore, alternative substances supplying polysaccharides that have more diverse and complex structures are necessary for the development of novel oligosaccharides that have actions not present in existing prebiotics. In this review, we show that structural polysaccharides found in plant cell walls, such as xylans and pectins, are particularly potential resources supplying broadly diverse polysaccharides to produce new prebiotics. |
format | Online Article Text |
id | pubmed-3762269 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2012 |
publisher | The Korean Society of Applied Pharmacology |
record_format | MEDLINE/PubMed |
spelling | pubmed-37622692013-09-05 Plant Cell Wall Polysaccharides as Potential Resources for the Development of Novel Prebiotics Yoo, Hye-Dong Kim, Dojung Paek, Seung-Ho Biomol Ther (Seoul) Article Prebiotic oligosaccharides, with a degree of polymerization (DP) of mostly less than 10, exhibit diverse biological activities that contribute to human health. Currently available prebiotics are mostly derived from disaccharides and simple polysaccharides found in plants. Subtle differences in the structures of oligosaccharides can cause significant differences in their prebiotic proper-ties. Therefore, alternative substances supplying polysaccharides that have more diverse and complex structures are necessary for the development of novel oligosaccharides that have actions not present in existing prebiotics. In this review, we show that structural polysaccharides found in plant cell walls, such as xylans and pectins, are particularly potential resources supplying broadly diverse polysaccharides to produce new prebiotics. The Korean Society of Applied Pharmacology 2012-07 /pmc/articles/PMC3762269/ /pubmed/24009823 http://dx.doi.org/10.4062/biomolther.2012.20.4.371 Text en Copyright ©2012, The Korean Society of Pharmaceutics |
spellingShingle | Article Yoo, Hye-Dong Kim, Dojung Paek, Seung-Ho Plant Cell Wall Polysaccharides as Potential Resources for the Development of Novel Prebiotics |
title | Plant Cell Wall Polysaccharides as Potential Resources for the Development of Novel Prebiotics |
title_full | Plant Cell Wall Polysaccharides as Potential Resources for the Development of Novel Prebiotics |
title_fullStr | Plant Cell Wall Polysaccharides as Potential Resources for the Development of Novel Prebiotics |
title_full_unstemmed | Plant Cell Wall Polysaccharides as Potential Resources for the Development of Novel Prebiotics |
title_short | Plant Cell Wall Polysaccharides as Potential Resources for the Development of Novel Prebiotics |
title_sort | plant cell wall polysaccharides as potential resources for the development of novel prebiotics |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3762269/ https://www.ncbi.nlm.nih.gov/pubmed/24009823 http://dx.doi.org/10.4062/biomolther.2012.20.4.371 |
work_keys_str_mv | AT yoohyedong plantcellwallpolysaccharidesaspotentialresourcesforthedevelopmentofnovelprebiotics AT kimdojung plantcellwallpolysaccharidesaspotentialresourcesforthedevelopmentofnovelprebiotics AT paekseungho plantcellwallpolysaccharidesaspotentialresourcesforthedevelopmentofnovelprebiotics |