Cargando…
CT Image Sequence Restoration Based on Sparse and Low-Rank Decomposition
Blurry organ boundaries and soft tissue structures present a major challenge in biomedical image restoration. In this paper, we propose a low-rank decomposition-based method for computed tomography (CT) image sequence restoration, where the CT image sequence is decomposed into a sparse component and...
Autores principales: | Gou, Shuiping, Wang, Yueyue, Wang, Zhilong, Peng, Yong, Zhang, Xiaopeng, Jiao, Licheng, Wu, Jianshe |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3762821/ https://www.ncbi.nlm.nih.gov/pubmed/24023764 http://dx.doi.org/10.1371/journal.pone.0072696 |
Ejemplares similares
-
Low-Rank and Sparse Matrix Decomposition for Genetic
Interaction Data
por: Wang, Yishu, et al.
Publicado: (2015) -
Low-Rank and Sparse Decomposition Model for Accelerating Dynamic MRI Reconstruction
por: Chen, Junbo, et al.
Publicado: (2017) -
Simultaneously Low Rank and Group Sparse Decomposition for Rolling Bearing Fault Diagnosis
por: Zheng, Kai, et al.
Publicado: (2020) -
Rank-One and Transformed Sparse Decomposition for Dynamic Cardiac MRI
por: Xiu, Xianchao, et al.
Publicado: (2015) -
Handbook of robust low-rank and sparse matrix decomposition: applications in image and video processing
por: Bouwmans, Thierry, et al.
Publicado: (2016)