Cargando…

Synthesis and Spectral Characterization of Antifungal Sensitive Schiff Base Transition Metal Complexes

New N(2)O(2) donor type Schiff base has been designed and synthesized by condensing acetoacetanilido-4-aminoantipyrine with 2-aminobenzoic acid in ethanol. Solid metal complexes of the Schiff base with Cu(II), Ni(II), Co(II), Mn(II), Zn(II), VO(IV), Hg(II) and Cd(II) metal ions were synthesized and...

Descripción completa

Detalles Bibliográficos
Autores principales: Raman, N., Sakthivel, A., Rajasekaran, K.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Korean Society of Mycology 2007
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3763143/
https://www.ncbi.nlm.nih.gov/pubmed/24015086
http://dx.doi.org/10.4489/MYCO.2007.35.3.150
Descripción
Sumario:New N(2)O(2) donor type Schiff base has been designed and synthesized by condensing acetoacetanilido-4-aminoantipyrine with 2-aminobenzoic acid in ethanol. Solid metal complexes of the Schiff base with Cu(II), Ni(II), Co(II), Mn(II), Zn(II), VO(IV), Hg(II) and Cd(II) metal ions were synthesized and characterized by elemental analyses, magnetic susceptibility, molar conduction, fast atom bombardment (FAB) mass, IR, UV-Vis, and (1)H NMR spectral studies. The data show that the complexes have the composition of ML type. The UV-Vis. and magnetic susceptibility data of the complexes suggest a square-planar geometry around the central metal ion except VO(IV) complex which has square-pyramidal geometry. The in vitro antifungal activities of the compounds were tested against fungi such as Aspergillus niger, Aspergillus flavus, Rhizopus stolonifer, Candida albicans, Rhizoctonia bataicola and Trichoderma harizanum. All the metal complexes showed stronger antifungal activities than the free ligand. The minimum inhibitory concentrations (MIC) of the metal complexes were found in the range of 10~31 µg/ml.