Cargando…

Geometry of Quantum Computation with Qutrits

Determining the quantum circuit complexity of a unitary operation is an important problem in quantum computation. By using the mathematical techniques of Riemannian geometry, we investigate the efficient quantum circuits in quantum computation with n qutrits. We show that the optimal quantum circuit...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Bin, Yu, Zu-Huan, Fei, Shao-Ming
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3763255/
https://www.ncbi.nlm.nih.gov/pubmed/24005379
http://dx.doi.org/10.1038/srep02594
_version_ 1782282995112083456
author Li, Bin
Yu, Zu-Huan
Fei, Shao-Ming
author_facet Li, Bin
Yu, Zu-Huan
Fei, Shao-Ming
author_sort Li, Bin
collection PubMed
description Determining the quantum circuit complexity of a unitary operation is an important problem in quantum computation. By using the mathematical techniques of Riemannian geometry, we investigate the efficient quantum circuits in quantum computation with n qutrits. We show that the optimal quantum circuits are essentially equivalent to the shortest path between two points in a certain curved geometry of SU(3(n)). As an example, three-qutrit systems are investigated in detail.
format Online
Article
Text
id pubmed-3763255
institution National Center for Biotechnology Information
language English
publishDate 2013
publisher Nature Publishing Group
record_format MEDLINE/PubMed
spelling pubmed-37632552013-09-09 Geometry of Quantum Computation with Qutrits Li, Bin Yu, Zu-Huan Fei, Shao-Ming Sci Rep Article Determining the quantum circuit complexity of a unitary operation is an important problem in quantum computation. By using the mathematical techniques of Riemannian geometry, we investigate the efficient quantum circuits in quantum computation with n qutrits. We show that the optimal quantum circuits are essentially equivalent to the shortest path between two points in a certain curved geometry of SU(3(n)). As an example, three-qutrit systems are investigated in detail. Nature Publishing Group 2013-09-05 /pmc/articles/PMC3763255/ /pubmed/24005379 http://dx.doi.org/10.1038/srep02594 Text en Copyright © 2013, Macmillan Publishers Limited. All rights reserved http://creativecommons.org/licenses/by/3.0/ This work is licensed under a Creative Commons Attribution 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by/3.0/
spellingShingle Article
Li, Bin
Yu, Zu-Huan
Fei, Shao-Ming
Geometry of Quantum Computation with Qutrits
title Geometry of Quantum Computation with Qutrits
title_full Geometry of Quantum Computation with Qutrits
title_fullStr Geometry of Quantum Computation with Qutrits
title_full_unstemmed Geometry of Quantum Computation with Qutrits
title_short Geometry of Quantum Computation with Qutrits
title_sort geometry of quantum computation with qutrits
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3763255/
https://www.ncbi.nlm.nih.gov/pubmed/24005379
http://dx.doi.org/10.1038/srep02594
work_keys_str_mv AT libin geometryofquantumcomputationwithqutrits
AT yuzuhuan geometryofquantumcomputationwithqutrits
AT feishaoming geometryofquantumcomputationwithqutrits