Cargando…
Cuprous oxide nanoparticles inhibit the growth and metastasis of melanoma by targeting mitochondria
Metal and its oxide nanoparticles show ideal pharmacological activity, especially in anti-tumor therapy. Our previous study demonstrated that cuprous oxide nanoparticles (CONPs) selectively induce apoptosis of tumor cells in vitro. To explore the anti-tumor properties of CONPs in vivo, we used the p...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3763466/ https://www.ncbi.nlm.nih.gov/pubmed/23990023 http://dx.doi.org/10.1038/cddis.2013.314 |
_version_ | 1782283023729819648 |
---|---|
author | Wang, Y Yang, F Zhang, H-X Zi, X-Y Pan, X-H Chen, F Luo, W-D Li, J-X Zhu, H-Y Hu, Y-P |
author_facet | Wang, Y Yang, F Zhang, H-X Zi, X-Y Pan, X-H Chen, F Luo, W-D Li, J-X Zhu, H-Y Hu, Y-P |
author_sort | Wang, Y |
collection | PubMed |
description | Metal and its oxide nanoparticles show ideal pharmacological activity, especially in anti-tumor therapy. Our previous study demonstrated that cuprous oxide nanoparticles (CONPs) selectively induce apoptosis of tumor cells in vitro. To explore the anti-tumor properties of CONPs in vivo, we used the particles to treat mouse subcutaneous melanoma and metastatic lung tumors, based on B16-F10 mouse melanoma cells, by intratumoral and systemic injections, respectively. The results showed that CONPs significantly reduced the growth of melanoma, inhibited the metastasis of B16-F10 cells and increased the survival rate of tumor-bearing mice. Importantly, the results also indicated that CONPs were rapidly cleared from the organs and that these particles exhibited little systemic toxicity. Furthermore, we observed that CONPs targeted the mitochondria, which resulted in the release of cytochrome C from the mitochondria and the activation of caspase-3 and caspase-9 after the CONPs entered the cells. In conclusion, CONPs can induce the apoptosis of cancer cells through a mitochondrion-mediated apoptosis pathway, which raises the possibility that CONPs could be used to cure melanoma and other cancers. |
format | Online Article Text |
id | pubmed-3763466 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | Nature Publishing Group |
record_format | MEDLINE/PubMed |
spelling | pubmed-37634662013-09-11 Cuprous oxide nanoparticles inhibit the growth and metastasis of melanoma by targeting mitochondria Wang, Y Yang, F Zhang, H-X Zi, X-Y Pan, X-H Chen, F Luo, W-D Li, J-X Zhu, H-Y Hu, Y-P Cell Death Dis Original Article Metal and its oxide nanoparticles show ideal pharmacological activity, especially in anti-tumor therapy. Our previous study demonstrated that cuprous oxide nanoparticles (CONPs) selectively induce apoptosis of tumor cells in vitro. To explore the anti-tumor properties of CONPs in vivo, we used the particles to treat mouse subcutaneous melanoma and metastatic lung tumors, based on B16-F10 mouse melanoma cells, by intratumoral and systemic injections, respectively. The results showed that CONPs significantly reduced the growth of melanoma, inhibited the metastasis of B16-F10 cells and increased the survival rate of tumor-bearing mice. Importantly, the results also indicated that CONPs were rapidly cleared from the organs and that these particles exhibited little systemic toxicity. Furthermore, we observed that CONPs targeted the mitochondria, which resulted in the release of cytochrome C from the mitochondria and the activation of caspase-3 and caspase-9 after the CONPs entered the cells. In conclusion, CONPs can induce the apoptosis of cancer cells through a mitochondrion-mediated apoptosis pathway, which raises the possibility that CONPs could be used to cure melanoma and other cancers. Nature Publishing Group 2013-08 2013-08-29 /pmc/articles/PMC3763466/ /pubmed/23990023 http://dx.doi.org/10.1038/cddis.2013.314 Text en Copyright © 2013 Macmillan Publishers Limited http://creativecommons.org/licenses/by-nc-sa/3.0/ This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/ |
spellingShingle | Original Article Wang, Y Yang, F Zhang, H-X Zi, X-Y Pan, X-H Chen, F Luo, W-D Li, J-X Zhu, H-Y Hu, Y-P Cuprous oxide nanoparticles inhibit the growth and metastasis of melanoma by targeting mitochondria |
title | Cuprous oxide nanoparticles inhibit the growth and metastasis of melanoma by targeting mitochondria |
title_full | Cuprous oxide nanoparticles inhibit the growth and metastasis of melanoma by targeting mitochondria |
title_fullStr | Cuprous oxide nanoparticles inhibit the growth and metastasis of melanoma by targeting mitochondria |
title_full_unstemmed | Cuprous oxide nanoparticles inhibit the growth and metastasis of melanoma by targeting mitochondria |
title_short | Cuprous oxide nanoparticles inhibit the growth and metastasis of melanoma by targeting mitochondria |
title_sort | cuprous oxide nanoparticles inhibit the growth and metastasis of melanoma by targeting mitochondria |
topic | Original Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3763466/ https://www.ncbi.nlm.nih.gov/pubmed/23990023 http://dx.doi.org/10.1038/cddis.2013.314 |
work_keys_str_mv | AT wangy cuprousoxidenanoparticlesinhibitthegrowthandmetastasisofmelanomabytargetingmitochondria AT yangf cuprousoxidenanoparticlesinhibitthegrowthandmetastasisofmelanomabytargetingmitochondria AT zhanghx cuprousoxidenanoparticlesinhibitthegrowthandmetastasisofmelanomabytargetingmitochondria AT zixy cuprousoxidenanoparticlesinhibitthegrowthandmetastasisofmelanomabytargetingmitochondria AT panxh cuprousoxidenanoparticlesinhibitthegrowthandmetastasisofmelanomabytargetingmitochondria AT chenf cuprousoxidenanoparticlesinhibitthegrowthandmetastasisofmelanomabytargetingmitochondria AT luowd cuprousoxidenanoparticlesinhibitthegrowthandmetastasisofmelanomabytargetingmitochondria AT lijx cuprousoxidenanoparticlesinhibitthegrowthandmetastasisofmelanomabytargetingmitochondria AT zhuhy cuprousoxidenanoparticlesinhibitthegrowthandmetastasisofmelanomabytargetingmitochondria AT huyp cuprousoxidenanoparticlesinhibitthegrowthandmetastasisofmelanomabytargetingmitochondria |