Cargando…
A Perspective on the Comparative Antileukemic Activity of 5-Aza-2′-deoxycytidine (Decitabine) and 5-Azacytidine (Vidaza)
5-Aza-2′-deoxycytidine (5-AZA-CdR, decitabine, Dacogen®) and 5-azacytidine (5-AC, Vidaza®) are epigenetic agents that have been approved for the clinical treatment of the hematological malignancy myelodysplastic syndrome (MDS) and are currently under clinical evaluation for the treatment of acute my...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3763670/ https://www.ncbi.nlm.nih.gov/pubmed/24280679 http://dx.doi.org/10.3390/ph5080875 |
_version_ | 1782283057746673664 |
---|---|
author | Momparler, Richard L. |
author_facet | Momparler, Richard L. |
author_sort | Momparler, Richard L. |
collection | PubMed |
description | 5-Aza-2′-deoxycytidine (5-AZA-CdR, decitabine, Dacogen®) and 5-azacytidine (5-AC, Vidaza®) are epigenetic agents that have been approved for the clinical treatment of the hematological malignancy myelodysplastic syndrome (MDS) and are currently under clinical evaluation for the treatment of acute myeloid leukemia (AML). Most investigators currently classify 5-AZA-CdR and 5-AC as inhibitors of DNA methylation, which can reactivate tumor suppressor genes silenced by this epigenetic event. Examination of the pharmacology of these analogues reveals important differences with respect to their molecular mechanism of action. The action of 5-AZA-CdR is due to its incorporation into DNA. 5-AC is a riboside analogue that is incorporated primarily into RNA. A small fraction of 5-AC is converted to its deoxyribose form by ribonucleotide reductase and subsequently incorporated into DNA. The incorporation of 5-AC into RNA can interfere with the biological function of RNA and result in an inhibition protein synthesis. Microarray analysis revealed that both these analogues target the expression of different cohorts of genes. Preclinical studies show that 5-AZA-CdR is a more effective antileukemic agent than 5-AC. One explanation for this observation is that 5-AC blocks the progression of some leukemic cells from G(1) into S phase, and this protects these cells from the chemotherapeutic action of this riboside analogue related to its incorporation into DNA. However, differences in chemotherapeutic efficacy of these related analogues have not been clearly demonstrated in clinical trials in patients with hematological malignancies. These observations should be taken into consideration in the design of new clinical trials using 5-AZA-CdR or 5-AC in patients with MDS and AML. |
format | Online Article Text |
id | pubmed-3763670 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2012 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-37636702013-11-14 A Perspective on the Comparative Antileukemic Activity of 5-Aza-2′-deoxycytidine (Decitabine) and 5-Azacytidine (Vidaza) Momparler, Richard L. Pharmaceuticals (Basel) Review 5-Aza-2′-deoxycytidine (5-AZA-CdR, decitabine, Dacogen®) and 5-azacytidine (5-AC, Vidaza®) are epigenetic agents that have been approved for the clinical treatment of the hematological malignancy myelodysplastic syndrome (MDS) and are currently under clinical evaluation for the treatment of acute myeloid leukemia (AML). Most investigators currently classify 5-AZA-CdR and 5-AC as inhibitors of DNA methylation, which can reactivate tumor suppressor genes silenced by this epigenetic event. Examination of the pharmacology of these analogues reveals important differences with respect to their molecular mechanism of action. The action of 5-AZA-CdR is due to its incorporation into DNA. 5-AC is a riboside analogue that is incorporated primarily into RNA. A small fraction of 5-AC is converted to its deoxyribose form by ribonucleotide reductase and subsequently incorporated into DNA. The incorporation of 5-AC into RNA can interfere with the biological function of RNA and result in an inhibition protein synthesis. Microarray analysis revealed that both these analogues target the expression of different cohorts of genes. Preclinical studies show that 5-AZA-CdR is a more effective antileukemic agent than 5-AC. One explanation for this observation is that 5-AC blocks the progression of some leukemic cells from G(1) into S phase, and this protects these cells from the chemotherapeutic action of this riboside analogue related to its incorporation into DNA. However, differences in chemotherapeutic efficacy of these related analogues have not been clearly demonstrated in clinical trials in patients with hematological malignancies. These observations should be taken into consideration in the design of new clinical trials using 5-AZA-CdR or 5-AC in patients with MDS and AML. MDPI 2012-08-21 /pmc/articles/PMC3763670/ /pubmed/24280679 http://dx.doi.org/10.3390/ph5080875 Text en © 2012 by the authors; licensee MDPI, Basel, Switzerland. http://creativecommons.org/licenses/by/3.0/ This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/). |
spellingShingle | Review Momparler, Richard L. A Perspective on the Comparative Antileukemic Activity of 5-Aza-2′-deoxycytidine (Decitabine) and 5-Azacytidine (Vidaza) |
title | A Perspective on the Comparative Antileukemic Activity of 5-Aza-2′-deoxycytidine (Decitabine) and 5-Azacytidine (Vidaza) |
title_full | A Perspective on the Comparative Antileukemic Activity of 5-Aza-2′-deoxycytidine (Decitabine) and 5-Azacytidine (Vidaza) |
title_fullStr | A Perspective on the Comparative Antileukemic Activity of 5-Aza-2′-deoxycytidine (Decitabine) and 5-Azacytidine (Vidaza) |
title_full_unstemmed | A Perspective on the Comparative Antileukemic Activity of 5-Aza-2′-deoxycytidine (Decitabine) and 5-Azacytidine (Vidaza) |
title_short | A Perspective on the Comparative Antileukemic Activity of 5-Aza-2′-deoxycytidine (Decitabine) and 5-Azacytidine (Vidaza) |
title_sort | perspective on the comparative antileukemic activity of 5-aza-2′-deoxycytidine (decitabine) and 5-azacytidine (vidaza) |
topic | Review |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3763670/ https://www.ncbi.nlm.nih.gov/pubmed/24280679 http://dx.doi.org/10.3390/ph5080875 |
work_keys_str_mv | AT momparlerrichardl aperspectiveonthecomparativeantileukemicactivityof5aza2deoxycytidinedecitabineand5azacytidinevidaza AT momparlerrichardl perspectiveonthecomparativeantileukemicactivityof5aza2deoxycytidinedecitabineand5azacytidinevidaza |