Cargando…
Identification of a Novel and Unique Transcription Factor in the Intraerythrocytic Stage of Plasmodium falciparum
The mechanisms of stage-specific gene regulation in the malaria parasite Plasmodium falciparum are largely unclear, with only a small number of specific regulatory transcription factors (AP2 family) having been identified. In particular, the transcription factors that function in the intraerythrocyt...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3764013/ https://www.ncbi.nlm.nih.gov/pubmed/24040327 http://dx.doi.org/10.1371/journal.pone.0074701 |
Sumario: | The mechanisms of stage-specific gene regulation in the malaria parasite Plasmodium falciparum are largely unclear, with only a small number of specific regulatory transcription factors (AP2 family) having been identified. In particular, the transcription factors that function in the intraerythrocytic stage remain to be elucidated. Previously, as a model case for stage-specific transcription in the P. falciparum intraerythrocytic stage, we analyzed the transcriptional regulation of pf1-cys-prx, a trophozoite/schizont-specific gene, and suggested that some nuclear factors bind specifically to the cis-element of pf1-cys-prx and enhance transcription. In the present study, we purified nuclear factors from parasite nuclear extract by 5 steps of chromatography, and identified a factor termed PREBP. PREBP is not included in the AP2 family, and is a novel protein with four K-homology (KH) domains. The KH domain is known to be found in RNA-binding or single-stranded DNA-binding proteins. PREBP is well conserved in Plasmodium species and partially conserved in phylum Apicomplexa. To evaluate the effects of PREBP overexpression, we used a transient overexpression and luciferase assay combined approach. Overexpression of PREBP markedly enhanced luciferase expression under the control of the pf1-cys-prx cis-element. These results provide the first evidence of a novel transcription factor that activates the gene expression in the malaria parasite intraerythrocytic stage. These findings enhance our understanding of the evolution of specific transcription machinery in Plasmodium and other eukaryotes. |
---|