Cargando…
Spike Triggered Covariance in Strongly Correlated Gaussian Stimuli
Many biological systems perform computations on inputs that have very large dimensionality. Determining the relevant input combinations for a particular computation is often key to understanding its function. A common way to find the relevant input dimensions is to examine the difference in variance...
Autores principales: | Aljadeff, Johnatan, Segev, Ronen, Berry, Michael J., Sharpee, Tatyana O. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3764020/ https://www.ncbi.nlm.nih.gov/pubmed/24039563 http://dx.doi.org/10.1371/journal.pcbi.1003206 |
Ejemplares similares
-
Chaos in heterogeneous neural networks: I. The critical transition point
por: Aljadeff, Johnatan, et al.
Publicado: (2014) -
Chaos in heterogeneous neural networks: II. Multiple activity modes
por: Stern, Merav, et al.
Publicado: (2014) -
Spike-triggered covariance: geometric proof, symmetry properties, and extension beyond Gaussian stimuli
por: Samengo, Inés, et al.
Publicado: (2012) -
Analyzing multicomponent receptive fields from neural responses to natural stimuli
por: Rowekamp, Ryan, et al.
Publicado: (2011) -
Spike-Triggered Covariance Analysis Reveals Phenomenological Diversity of Contrast Adaptation in the Retina
por: Liu, Jian K., et al.
Publicado: (2015)