Cargando…

Altitudinal Gradient of Microbial Biomass Phosphorus and Its Relationship with Microbial Biomass Carbon, Nitrogen, and Rhizosphere Soil Phosphorus on the Eastern Slope of Gongga Mountain, SW China

Microbial biomass phosphorus (MBP) is one of the most active forms of phosphorus (P) in soils. MBP plays an important role in the biogeochemical P cycle. To explore MBP distribution and its relationship with other factors, the MBP and rhizosphere soil P concentrations and fractions in six vegetation...

Descripción completa

Detalles Bibliográficos
Autores principales: Sun, Hongyang, Wu, Yanhong, Yu, Dong, Zhou, Jun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3764187/
https://www.ncbi.nlm.nih.gov/pubmed/24039830
http://dx.doi.org/10.1371/journal.pone.0072952
Descripción
Sumario:Microbial biomass phosphorus (MBP) is one of the most active forms of phosphorus (P) in soils. MBP plays an important role in the biogeochemical P cycle. To explore MBP distribution and its relationship with other factors, the MBP and rhizosphere soil P concentrations and fractions in six vegetation zones on the eastern slope of Gongga Mountain in SW China were investigated. The MBP distribution followed a parabolic pattern with altitude and the concentration was highest in the subalpine dark coniferous forest (SDC) zone, which was approximately 3500 m above sea level (asl). Below 3500 m asl, the MBP distribution was controlled by precipitation and vegetation type. In addition, temperature, precipitation and vegetation type controlled the MBP distribution at elevations above 3500 m asl. No specific distribution pattern was determined regarding rhizosphere soil P fractions. However, MBP was significantly correlated with the unavailable P fraction in the rhizosphere rather than with the available P fraction. This result suggests that the relationships between the rhizosphere soil P fractions and the MBP depend on time. The microbial biomass element ratios were relatively consistent on the eastern slope of Gongga Mountain. However, variations in the microbial biomass element rations were observed in six of the vegetation zones. The mean C:N:P ratio was 9.0∶1.3∶1. Overall, vegetation type resulted in the observed fluctuations of the microbial biomass element ratio.