Cargando…
Quid Pro Quo: A Mechanism for Fair Collaboration in Networked Systems
Collaboration may be understood as the execution of coordinated tasks (in the most general sense) by groups of users, who cooperate for achieving a common goal. Collaboration is a fundamental assumption and requirement for the correct operation of many communication systems. The main challenge when...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3764197/ https://www.ncbi.nlm.nih.gov/pubmed/24039696 http://dx.doi.org/10.1371/journal.pone.0066575 |
Sumario: | Collaboration may be understood as the execution of coordinated tasks (in the most general sense) by groups of users, who cooperate for achieving a common goal. Collaboration is a fundamental assumption and requirement for the correct operation of many communication systems. The main challenge when creating collaborative systems in a decentralized manner is dealing with the fact that users may behave in selfish ways, trying to obtain the benefits of the tasks but without participating in their execution. In this context, Game Theory has been instrumental to model collaborative systems and the task allocation problem, and to design mechanisms for optimal allocation of tasks. In this paper, we revise the classical assumptions of these models and propose a new approach to this problem. First, we establish a system model based on heterogenous nodes (users, players), and propose a basic distributed mechanism so that, when a new task appears, it is assigned to the most suitable node. The classical technique for compensating a node that executes a task is the use of payments (which in most networks are hard or impossible to implement). Instead, we propose a distributed mechanism for the optimal allocation of tasks without payments. We prove this mechanism to be robust evenevent in the presence of independent selfish or rationally limited players. Additionally, our model is based on very weak assumptions, which makes the proposed mechanisms susceptible to be implemented in networked systems (e.g., the Internet). |
---|