Cargando…
Nitric oxide-dependent long-term depression but not endocannabinoid-mediated long-term potentiation is crucial for visual recognition memory
Synaptic plasticity in perirhinal cortex is essential for recognition memory. Nitric oxide and endocannabinoids (eCBs), which are produced in the postsynaptic cell and act on the presynaptic terminal, are implicated in mechanisms of long-term potentiation (LTP) and long-term depression (LTD) in othe...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Blackwell Science Inc
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3764640/ https://www.ncbi.nlm.nih.gov/pubmed/23671159 http://dx.doi.org/10.1113/jphysiol.2013.254862 |
_version_ | 1782283164461301760 |
---|---|
author | Tamagnini, Francesco Barker, Gareth Warburton, E Clea Burattini, Costanza Aicardi, Giorgio Bashir, Zafar I |
author_facet | Tamagnini, Francesco Barker, Gareth Warburton, E Clea Burattini, Costanza Aicardi, Giorgio Bashir, Zafar I |
author_sort | Tamagnini, Francesco |
collection | PubMed |
description | Synaptic plasticity in perirhinal cortex is essential for recognition memory. Nitric oxide and endocannabinoids (eCBs), which are produced in the postsynaptic cell and act on the presynaptic terminal, are implicated in mechanisms of long-term potentiation (LTP) and long-term depression (LTD) in other brain regions. In this study, we examine these two retrograde signalling cascades in perirhinal cortex synaptic plasticity and in visual recognition memory in the rat. We show that inhibition of NO-dependent signalling prevented both carbachol- and activity (5 Hz)-dependent LTD but not activity (100 Hz theta burst)-dependent LTP in the rat perirhinal cortex in vitro. In contrast, inhibition of the eCB-dependent signalling prevented LTP but not the two forms of LTD in vitro. Local administration into perirhinal cortex of the nitric oxide synthase inhibitor NPA (2 μm) disrupted acquisition of long-term visual recognition memory. In contrast, AM251 (10 μm), a cannabinoid receptor 1 antagonist, did not impair visual recognition memory. The results of this study demonstrate dissociation between putative retrograde signalling mechanisms in LTD and LTP in perirhinal cortex. Thus, LTP relies on cannabinoid but not NO signalling, whilst LTD relies on NO- but not eCB-dependent signalling. Critically, these results also establish, for the first time, that NO- but not eCB-dependent signalling is important in perirhinal cortex-dependent visual recognition memory. |
format | Online Article Text |
id | pubmed-3764640 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | Blackwell Science Inc |
record_format | MEDLINE/PubMed |
spelling | pubmed-37646402014-01-14 Nitric oxide-dependent long-term depression but not endocannabinoid-mediated long-term potentiation is crucial for visual recognition memory Tamagnini, Francesco Barker, Gareth Warburton, E Clea Burattini, Costanza Aicardi, Giorgio Bashir, Zafar I J Physiol Neuroscience: Development/Plasticity/Repair Synaptic plasticity in perirhinal cortex is essential for recognition memory. Nitric oxide and endocannabinoids (eCBs), which are produced in the postsynaptic cell and act on the presynaptic terminal, are implicated in mechanisms of long-term potentiation (LTP) and long-term depression (LTD) in other brain regions. In this study, we examine these two retrograde signalling cascades in perirhinal cortex synaptic plasticity and in visual recognition memory in the rat. We show that inhibition of NO-dependent signalling prevented both carbachol- and activity (5 Hz)-dependent LTD but not activity (100 Hz theta burst)-dependent LTP in the rat perirhinal cortex in vitro. In contrast, inhibition of the eCB-dependent signalling prevented LTP but not the two forms of LTD in vitro. Local administration into perirhinal cortex of the nitric oxide synthase inhibitor NPA (2 μm) disrupted acquisition of long-term visual recognition memory. In contrast, AM251 (10 μm), a cannabinoid receptor 1 antagonist, did not impair visual recognition memory. The results of this study demonstrate dissociation between putative retrograde signalling mechanisms in LTD and LTP in perirhinal cortex. Thus, LTP relies on cannabinoid but not NO signalling, whilst LTD relies on NO- but not eCB-dependent signalling. Critically, these results also establish, for the first time, that NO- but not eCB-dependent signalling is important in perirhinal cortex-dependent visual recognition memory. Blackwell Science Inc 2013-08-15 2013-05-13 /pmc/articles/PMC3764640/ /pubmed/23671159 http://dx.doi.org/10.1113/jphysiol.2013.254862 Text en © 2013 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. https://creativecommons.org/licenses/by/4.0/ © 2013 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Neuroscience: Development/Plasticity/Repair Tamagnini, Francesco Barker, Gareth Warburton, E Clea Burattini, Costanza Aicardi, Giorgio Bashir, Zafar I Nitric oxide-dependent long-term depression but not endocannabinoid-mediated long-term potentiation is crucial for visual recognition memory |
title | Nitric oxide-dependent long-term depression but not endocannabinoid-mediated long-term potentiation is crucial for visual recognition memory |
title_full | Nitric oxide-dependent long-term depression but not endocannabinoid-mediated long-term potentiation is crucial for visual recognition memory |
title_fullStr | Nitric oxide-dependent long-term depression but not endocannabinoid-mediated long-term potentiation is crucial for visual recognition memory |
title_full_unstemmed | Nitric oxide-dependent long-term depression but not endocannabinoid-mediated long-term potentiation is crucial for visual recognition memory |
title_short | Nitric oxide-dependent long-term depression but not endocannabinoid-mediated long-term potentiation is crucial for visual recognition memory |
title_sort | nitric oxide-dependent long-term depression but not endocannabinoid-mediated long-term potentiation is crucial for visual recognition memory |
topic | Neuroscience: Development/Plasticity/Repair |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3764640/ https://www.ncbi.nlm.nih.gov/pubmed/23671159 http://dx.doi.org/10.1113/jphysiol.2013.254862 |
work_keys_str_mv | AT tamagninifrancesco nitricoxidedependentlongtermdepressionbutnotendocannabinoidmediatedlongtermpotentiationiscrucialforvisualrecognitionmemory AT barkergareth nitricoxidedependentlongtermdepressionbutnotendocannabinoidmediatedlongtermpotentiationiscrucialforvisualrecognitionmemory AT warburtoneclea nitricoxidedependentlongtermdepressionbutnotendocannabinoidmediatedlongtermpotentiationiscrucialforvisualrecognitionmemory AT burattinicostanza nitricoxidedependentlongtermdepressionbutnotendocannabinoidmediatedlongtermpotentiationiscrucialforvisualrecognitionmemory AT aicardigiorgio nitricoxidedependentlongtermdepressionbutnotendocannabinoidmediatedlongtermpotentiationiscrucialforvisualrecognitionmemory AT bashirzafari nitricoxidedependentlongtermdepressionbutnotendocannabinoidmediatedlongtermpotentiationiscrucialforvisualrecognitionmemory |