Cargando…

DCJ-indel and DCJ-substitution distances with distinct operation costs

BACKGROUND: Classical approaches to compute the genomic distance are usually limited to genomes with the same content and take into consideration only rearrangements that change the organization of the genome (i.e. positions and orientation of pieces of DNA, number and type of chromosomes, etc.), su...

Descripción completa

Detalles Bibliográficos
Autores principales: da Silva, Poly H, Machado, Raphael, Dantas, Simone, Braga, Marília DV
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3765133/
https://www.ncbi.nlm.nih.gov/pubmed/23879938
http://dx.doi.org/10.1186/1748-7188-8-21
Descripción
Sumario:BACKGROUND: Classical approaches to compute the genomic distance are usually limited to genomes with the same content and take into consideration only rearrangements that change the organization of the genome (i.e. positions and orientation of pieces of DNA, number and type of chromosomes, etc.), such as inversions, translocations, fusions and fissions. These operations are generically represented by the double-cut and join (DCJ) operation. The distance between two genomes, in terms of number of DCJ operations, can be computed in linear time. In order to handle genomes with distinct contents, also insertions and deletions of fragments of DNA – named indels – must be allowed. More powerful than an indel is a substitution of a fragment of DNA by another fragment of DNA. Indels and substitutions are called content-modifying operations. It has been shown that both the DCJ-indel and the DCJ-substitution distances can also be computed in linear time, assuming that the same cost is assigned to any DCJ or content-modifying operation. RESULTS: In the present study we extend the DCJ-indel and the DCJ-substitution models, considering that the content-modifying cost is distinct from and upper bounded by the DCJ cost, and show that the distance in both models can still be computed in linear time. Although the triangular inequality can be disrupted in both models, we also show how to efficiently fix this problem a posteriori.