Cargando…
Novel bioinformatics strategies for prediction of directional sequence changes in influenza virus genomes and for surveillance of potentially hazardous strains
BACKGROUND: With the remarkable increase of microbial and viral sequence data obtained from high-throughput DNA sequencers, novel tools are needed for comprehensive analysis of the big sequence data. We have developed “Batch-Learning Self-Organizing Map (BLSOM)” which can characterize very many, eve...
Autores principales: | Iwasaki, Yuki, Abe, Takashi, Wada, Yoshiko, Wada, Kennosuke, Ikemura, Toshimichi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3765179/ https://www.ncbi.nlm.nih.gov/pubmed/23964903 http://dx.doi.org/10.1186/1471-2334-13-386 |
Ejemplares similares
-
A Novel Bioinformatics Strategy to Analyze Microbial Big Sequence Data for Efficient Knowledge Discovery: Batch-Learning Self-Organizing Map (BLSOM)
por: Iwasaki, Yuki, et al.
Publicado: (2013) -
Prediction of Directional Changes of Influenza A Virus Genome Sequences with Emphasis on Pandemic H1N1/09 as a Model Case
por: Iwasaki, Yuki, et al.
Publicado: (2011) -
Directional and reoccurring sequence change in zoonotic RNA virus genomes visualized by time-series word count
por: Wada, Yoshiko, et al.
Publicado: (2016) -
Notable clustering of transcription-factor-binding motifs in human pericentric regions and its biological significance
por: Iwasaki, Yuki, et al.
Publicado: (2013) -
Unsupervised explainable AI for molecular evolutionary study of forty thousand SARS-CoV-2 genomes
por: Iwasaki, Yuki, et al.
Publicado: (2022)