Cargando…

MicroRNA-503 inhibits the G1/S transition by downregulating cyclin D3 and E2F3 in hepatocellular carcinoma

BACKGROUND: Increasing evidence indicates that deregulation of microRNAs (miRNAs) is involved in tumorigenesis. Downregulation of microRNA-503 has been observed in various types of diseases, including cancer. However, the biological function of miR-503 in hepatocellular carcinoma (HCC) is still larg...

Descripción completa

Detalles Bibliográficos
Autores principales: Xiao, Fenqiang, zhang, Wu, Chen, Liming, Chen, Fei, Xie, Haiyang, Xing, Chunyang, Yu, Xiaobo, Ding, Songming, Chen, Kangjie, Guo, Haijun, Cheng, Jun, Zheng, Shusen, Zhou, Lin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3765277/
https://www.ncbi.nlm.nih.gov/pubmed/23967867
http://dx.doi.org/10.1186/1479-5876-11-195
Descripción
Sumario:BACKGROUND: Increasing evidence indicates that deregulation of microRNAs (miRNAs) is involved in tumorigenesis. Downregulation of microRNA-503 has been observed in various types of diseases, including cancer. However, the biological function of miR-503 in hepatocellular carcinoma (HCC) is still largely unknown. In this study we aimed to elucidate the prognostic implications of miR-503 in HCC and its pathophysiologic role. METHODS: Quantitative reverse transcriptase polymerase chain reaction was used to evaluate miR-503 expression in HCC tissues and cell lines. Western blotting was performed to evaluate the expression of the miR-503 target genes. In vivo and in vitro assays were performed to evaluate the function of miR-503 in HCC. Luciferase reporter assay was employed to validate the miR-503 target genes. RESULTS: miR-503 was frequently downregulated in HCC cell lines and tissues. Low expression levels of miR-503 were associated with enhanced malignant potential such as portal vein tumor thrombi, histologic grade, TNM stage, AFP level and poor prognosis. Multivariate analysis indicated that miR-503 downregulation was significantly associated with worse overall survival of HCC patients. Functional studies showed miR-503 suppressed the proliferation of HCC cells by induction of G1 phase arrest through Rb-E2F signaling pathways, and thus may function as a tumor suppressor. Further investigation characterized two cell cycle-related molecules, cyclin D3 and E2F3, as the direct miR-503 targets. CONCLUSION: Our data highlight an important role for miR-503 in cell cycle regulation and in the molecular etiology of HCC, and implicate the potential application of miR-503 in prognosis prediction and miRNA-based HCC therapy.