Cargando…
Homeostatic regulation of spontaneous and evoked synaptic transmission in two steps
BACKGROUND: During development both Hebbian and homeostatic mechanisms regulate synaptic efficacy, usually working in opposite directions in response to neuronal activity. Homeostatic plasticity has often been investigated by assaying changes in spontaneous synaptic transmission resulting from chron...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3765453/ https://www.ncbi.nlm.nih.gov/pubmed/23965342 http://dx.doi.org/10.1186/1756-6606-6-38 |
_version_ | 1782283312859971584 |
---|---|
author | Gerkin, Richard C Nauen, David W Xu, Fang Bi, Guo-Qiang |
author_facet | Gerkin, Richard C Nauen, David W Xu, Fang Bi, Guo-Qiang |
author_sort | Gerkin, Richard C |
collection | PubMed |
description | BACKGROUND: During development both Hebbian and homeostatic mechanisms regulate synaptic efficacy, usually working in opposite directions in response to neuronal activity. Homeostatic plasticity has often been investigated by assaying changes in spontaneous synaptic transmission resulting from chronic circuit inactivation. However, effects of inactivation on evoked transmission have been less frequently reported. Importantly, contributions from the effects of circuit inactivation and reactivation on synaptic efficacy have not been individuated. RESULTS: Here we show for developing hippocampal neurons in primary culture that chronic inactivation with TTX results in increased mean amplitude of miniature synaptic currents (mEPSCs), but not evoked synaptic currents (eEPSCs). However, changes in quantal properties of transmission, partially reflected in mEPSCs, accurately predicted higher-order statistical properties of eEPSCs. The classical prediction of homeostasis – increased strength of evoked transmission – was realized after explicit circuit reactivation, in the form of cells’ pairwise connection probability. In contrast, distributions of eEPSC amplitudes for control and inactivated-then-reactivated groups matched throughout. CONCLUSIONS: Homeostatic up-regulation of evoked synaptic transmission in developing hippocampal neurons in primary culture requires both the inactivation and reactivation stages, leading to a net increase in functional circuit connectivity. |
format | Online Article Text |
id | pubmed-3765453 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-37654532013-09-10 Homeostatic regulation of spontaneous and evoked synaptic transmission in two steps Gerkin, Richard C Nauen, David W Xu, Fang Bi, Guo-Qiang Mol Brain Research BACKGROUND: During development both Hebbian and homeostatic mechanisms regulate synaptic efficacy, usually working in opposite directions in response to neuronal activity. Homeostatic plasticity has often been investigated by assaying changes in spontaneous synaptic transmission resulting from chronic circuit inactivation. However, effects of inactivation on evoked transmission have been less frequently reported. Importantly, contributions from the effects of circuit inactivation and reactivation on synaptic efficacy have not been individuated. RESULTS: Here we show for developing hippocampal neurons in primary culture that chronic inactivation with TTX results in increased mean amplitude of miniature synaptic currents (mEPSCs), but not evoked synaptic currents (eEPSCs). However, changes in quantal properties of transmission, partially reflected in mEPSCs, accurately predicted higher-order statistical properties of eEPSCs. The classical prediction of homeostasis – increased strength of evoked transmission – was realized after explicit circuit reactivation, in the form of cells’ pairwise connection probability. In contrast, distributions of eEPSC amplitudes for control and inactivated-then-reactivated groups matched throughout. CONCLUSIONS: Homeostatic up-regulation of evoked synaptic transmission in developing hippocampal neurons in primary culture requires both the inactivation and reactivation stages, leading to a net increase in functional circuit connectivity. BioMed Central 2013-08-22 /pmc/articles/PMC3765453/ /pubmed/23965342 http://dx.doi.org/10.1186/1756-6606-6-38 Text en Copyright © 2013 Gerkin et al.; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Gerkin, Richard C Nauen, David W Xu, Fang Bi, Guo-Qiang Homeostatic regulation of spontaneous and evoked synaptic transmission in two steps |
title | Homeostatic regulation of spontaneous and evoked synaptic transmission in two steps |
title_full | Homeostatic regulation of spontaneous and evoked synaptic transmission in two steps |
title_fullStr | Homeostatic regulation of spontaneous and evoked synaptic transmission in two steps |
title_full_unstemmed | Homeostatic regulation of spontaneous and evoked synaptic transmission in two steps |
title_short | Homeostatic regulation of spontaneous and evoked synaptic transmission in two steps |
title_sort | homeostatic regulation of spontaneous and evoked synaptic transmission in two steps |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3765453/ https://www.ncbi.nlm.nih.gov/pubmed/23965342 http://dx.doi.org/10.1186/1756-6606-6-38 |
work_keys_str_mv | AT gerkinrichardc homeostaticregulationofspontaneousandevokedsynaptictransmissionintwosteps AT nauendavidw homeostaticregulationofspontaneousandevokedsynaptictransmissionintwosteps AT xufang homeostaticregulationofspontaneousandevokedsynaptictransmissionintwosteps AT biguoqiang homeostaticregulationofspontaneousandevokedsynaptictransmissionintwosteps |