Cargando…
Differential expression analysis with global network adjustment
BACKGROUND: Large-scale chromosomal deletions or other non-specific perturbations of the transcriptome can alter the expression of hundreds or thousands of genes, and it is of biological interest to understand which genes are most profoundly affected. We present a method for predicting a gene’s expr...
Autores principales: | Gelfond, Jonathan A, Ibrahim, Joseph G, Gupta, Mayetri, Chen, Ming-Hui, Cody, Jannine D |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3766173/ https://www.ncbi.nlm.nih.gov/pubmed/23968143 http://dx.doi.org/10.1186/1471-2105-14-258 |
Ejemplares similares
-
Reproducibility of quantitative RT-PCR array in miRNA expression profiling and comparison with microarray analysis
por: Chen, Yongxin, et al.
Publicado: (2009) -
Metrics to estimate differential co-expression networks
por: Gonzalez-Valbuena, Elpidio-Emmanuel, et al.
Publicado: (2017) -
DNLC: differential network local consistency analysis
por: Lu, Jianwei, et al.
Publicado: (2019) -
MECoRank: cancer driver genes discovery simultaneously evaluating the impact of SNVs and differential expression on transcriptional networks
por: Hui, Ying, et al.
Publicado: (2019) -
A novel joint analysis framework improves identification of differentially expressed genes in cross disease transcriptomic analysis
por: Qin, Wenyi, et al.
Publicado: (2018)