Cargando…

Estimation of glomerular filtration rate by a radial basis function neural network in patients with type-2 diabetes mellitus

BACKGROUND: Accurate and precise estimates of glomerular filtration rate (GFR) are essential for clinical assessments, and many methods of estimation are available. We developed a radial basis function (RBF) network and assessed the performance of this method in the estimation of the GFRs of 207 pat...

Descripción completa

Detalles Bibliográficos
Autores principales: Liu, Xun, Chen, Yan-Ru, Li, Ning-shan, Wang, Cheng, Lv, Lin-Sheng, Li, Ming, Wu, Xiao-Ming, Lou, Tan-Qi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3766235/
https://www.ncbi.nlm.nih.gov/pubmed/23988079
http://dx.doi.org/10.1186/1471-2369-14-181
Descripción
Sumario:BACKGROUND: Accurate and precise estimates of glomerular filtration rate (GFR) are essential for clinical assessments, and many methods of estimation are available. We developed a radial basis function (RBF) network and assessed the performance of this method in the estimation of the GFRs of 207 patients with type-2 diabetes and CKD. METHODS: Standard GFR (sGFR) was determined by (99m)Tc-DTPA renal dynamic imaging and GFR was also estimated by the 6-variable MDRD equation and the 4-variable MDRD equation. RESULTS: Bland-Altman analysis indicated that estimates from the RBF network were more precise than those from the other two methods for some groups of patients. However, the median difference of RBF network estimates from sGFR was greater than those from the other two estimates, indicating greater bias. For patients with stage I/II CKD, the median absolute difference of the RBF network estimate from sGFR was significantly lower, and the P(50) of the RBF network estimate (n = 56, 87.5%) was significantly higher than that of the MDRD-4 estimate (n = 49, 76.6%) (p < 0.0167), indicating that the RBF network estimate provided greater accuracy for these patients. CONCLUSIONS: In patients with type-2 diabetes mellitus, estimation of GFR by our RBF network provided better precision and accuracy for some groups of patients than the estimation by the traditional MDRD equations. However, the RBF network estimates of GFR tended to have greater bias and higher than those indicated by sGFR determined by (99m)Tc-DTPA renal dynamic imaging.