Cargando…

Molecular Basis for Amino-Terminal Acetylation by the Heterodimeric NatA Complex

Amino-terminal acetylation is ubiquitous among eukaryotic proteins and controls a myriad of biological processes. Of the N-terminal acetyltransferases (NATs) that facilitate this co-translational modification, the heterodimeric NatA complex harbors the most diversity for substrate selection and modi...

Descripción completa

Detalles Bibliográficos
Autores principales: Liszczak, Glen, Goldberg, Jacob M., Foyn, Havard, Petersson, E. James, Arnesen, Thomas, Marmorstein, Ronen
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3766382/
https://www.ncbi.nlm.nih.gov/pubmed/23912279
http://dx.doi.org/10.1038/nsmb.2636
Descripción
Sumario:Amino-terminal acetylation is ubiquitous among eukaryotic proteins and controls a myriad of biological processes. Of the N-terminal acetyltransferases (NATs) that facilitate this co-translational modification, the heterodimeric NatA complex harbors the most diversity for substrate selection and modifies the majority of all amino-terminally acetylated proteins. Here, we report the X-ray crystal structure of the 100 kDa holo-NatA complex from Schizosaccharomyces pombe in the absence and presence of a bisubstrate peptide-CoA conjugate inhibitor, as well as the structure of the uncomplexed Naa10p catalytic subunit. The NatA-Naa15p auxiliary subunit contains 13 TPR motifs and adopts a ring-like topology that wraps around the NatA-Naa10p subunit, an interaction that alters the Naa10p active site for substrate-specific acetylation. These studies have implications for understanding the mechanistic details of other NAT complexes and how regulatory subunits modulate the activity of the broader family of protein acetyltransferases.