Cargando…
Bioengineering Silicon Quantum Dot Theranostics using a Network Analysis of Metabolomic and Proteomic Data in Cardiac Ischemia
Metabolomic profiling is ideally suited for the analysis of cardiac metabolism in healthy and diseased states. Here, we show that systematic discovery of biomarkers of ischemic preconditioning using metabolomics can be translated to potential nanotheranostics. Thirty-three patients underwent percuta...
Autores principales: | , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Ivyspring International Publisher
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3767118/ https://www.ncbi.nlm.nih.gov/pubmed/24019856 http://dx.doi.org/10.7150/thno.5010 |
_version_ | 1782283627638292480 |
---|---|
author | Erogbogbo, Folarin May, Jasmine Swihart, Mark Prasad, Paras N. Smart, Katie Jack, Seif El Korcyk, Dariusz Webster, Mark Stewart, Ralph Zeng, Irene Jullig, Mia Bakeev, Katherine Jamieson, Michelle Kasabov, Nikolas Gopalan, Banu Liang, Linda Hu, Raphael Schliebs, Stefan Villas-Boas, Silas Gladding, Patrick |
author_facet | Erogbogbo, Folarin May, Jasmine Swihart, Mark Prasad, Paras N. Smart, Katie Jack, Seif El Korcyk, Dariusz Webster, Mark Stewart, Ralph Zeng, Irene Jullig, Mia Bakeev, Katherine Jamieson, Michelle Kasabov, Nikolas Gopalan, Banu Liang, Linda Hu, Raphael Schliebs, Stefan Villas-Boas, Silas Gladding, Patrick |
author_sort | Erogbogbo, Folarin |
collection | PubMed |
description | Metabolomic profiling is ideally suited for the analysis of cardiac metabolism in healthy and diseased states. Here, we show that systematic discovery of biomarkers of ischemic preconditioning using metabolomics can be translated to potential nanotheranostics. Thirty-three patients underwent percutaneous coronary intervention (PCI) after myocardial infarction. Blood was sampled from catheters in the coronary sinus, aorta and femoral vein before coronary occlusion and 20 minutes after one minute of coronary occlusion. Plasma was analysed using GC-MS metabolomics and iTRAQ LC-MS/MS proteomics. Proteins and metabolites were mapped into the Metacore network database (GeneGo, MI, USA) to establish functional relevance. Expression of 13 proteins was significantly different (p<0.05) as a result of PCI. Included amongst these was CD44, a cell surface marker of reperfusion injury. Thirty-eight metabolites were identified using a targeted approach. Using PCA, 42% of their variance was accounted for by 21 metabolites. Multiple metabolic pathways and potential biomarkers of cardiac ischemia, reperfusion and preconditioning were identified. CD44, a marker of reperfusion injury, and myristic acid, a potential preconditioning agent, were incorporated into a nanotheranostic that may be useful for cardiovascular applications. Integrating biomarker discovery techniques into rationally designed nanoconstructs may lead to improvements in disease-specific diagnosis and treatment. |
format | Online Article Text |
id | pubmed-3767118 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | Ivyspring International Publisher |
record_format | MEDLINE/PubMed |
spelling | pubmed-37671182013-09-09 Bioengineering Silicon Quantum Dot Theranostics using a Network Analysis of Metabolomic and Proteomic Data in Cardiac Ischemia Erogbogbo, Folarin May, Jasmine Swihart, Mark Prasad, Paras N. Smart, Katie Jack, Seif El Korcyk, Dariusz Webster, Mark Stewart, Ralph Zeng, Irene Jullig, Mia Bakeev, Katherine Jamieson, Michelle Kasabov, Nikolas Gopalan, Banu Liang, Linda Hu, Raphael Schliebs, Stefan Villas-Boas, Silas Gladding, Patrick Theranostics Research Paper Metabolomic profiling is ideally suited for the analysis of cardiac metabolism in healthy and diseased states. Here, we show that systematic discovery of biomarkers of ischemic preconditioning using metabolomics can be translated to potential nanotheranostics. Thirty-three patients underwent percutaneous coronary intervention (PCI) after myocardial infarction. Blood was sampled from catheters in the coronary sinus, aorta and femoral vein before coronary occlusion and 20 minutes after one minute of coronary occlusion. Plasma was analysed using GC-MS metabolomics and iTRAQ LC-MS/MS proteomics. Proteins and metabolites were mapped into the Metacore network database (GeneGo, MI, USA) to establish functional relevance. Expression of 13 proteins was significantly different (p<0.05) as a result of PCI. Included amongst these was CD44, a cell surface marker of reperfusion injury. Thirty-eight metabolites were identified using a targeted approach. Using PCA, 42% of their variance was accounted for by 21 metabolites. Multiple metabolic pathways and potential biomarkers of cardiac ischemia, reperfusion and preconditioning were identified. CD44, a marker of reperfusion injury, and myristic acid, a potential preconditioning agent, were incorporated into a nanotheranostic that may be useful for cardiovascular applications. Integrating biomarker discovery techniques into rationally designed nanoconstructs may lead to improvements in disease-specific diagnosis and treatment. Ivyspring International Publisher 2013-09-04 /pmc/articles/PMC3767118/ /pubmed/24019856 http://dx.doi.org/10.7150/thno.5010 Text en © Ivyspring International Publisher. This is an open-access article distributed under the terms of the Creative Commons License (http://creativecommons.org/licenses/by-nc-nd/3.0/). Reproduction is permitted for personal, noncommercial use, provided that the article is in whole, unmodified, and properly cited. |
spellingShingle | Research Paper Erogbogbo, Folarin May, Jasmine Swihart, Mark Prasad, Paras N. Smart, Katie Jack, Seif El Korcyk, Dariusz Webster, Mark Stewart, Ralph Zeng, Irene Jullig, Mia Bakeev, Katherine Jamieson, Michelle Kasabov, Nikolas Gopalan, Banu Liang, Linda Hu, Raphael Schliebs, Stefan Villas-Boas, Silas Gladding, Patrick Bioengineering Silicon Quantum Dot Theranostics using a Network Analysis of Metabolomic and Proteomic Data in Cardiac Ischemia |
title | Bioengineering Silicon Quantum Dot Theranostics using a Network Analysis of Metabolomic and Proteomic Data in Cardiac Ischemia |
title_full | Bioengineering Silicon Quantum Dot Theranostics using a Network Analysis of Metabolomic and Proteomic Data in Cardiac Ischemia |
title_fullStr | Bioengineering Silicon Quantum Dot Theranostics using a Network Analysis of Metabolomic and Proteomic Data in Cardiac Ischemia |
title_full_unstemmed | Bioengineering Silicon Quantum Dot Theranostics using a Network Analysis of Metabolomic and Proteomic Data in Cardiac Ischemia |
title_short | Bioengineering Silicon Quantum Dot Theranostics using a Network Analysis of Metabolomic and Proteomic Data in Cardiac Ischemia |
title_sort | bioengineering silicon quantum dot theranostics using a network analysis of metabolomic and proteomic data in cardiac ischemia |
topic | Research Paper |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3767118/ https://www.ncbi.nlm.nih.gov/pubmed/24019856 http://dx.doi.org/10.7150/thno.5010 |
work_keys_str_mv | AT erogbogbofolarin bioengineeringsiliconquantumdottheranosticsusinganetworkanalysisofmetabolomicandproteomicdataincardiacischemia AT mayjasmine bioengineeringsiliconquantumdottheranosticsusinganetworkanalysisofmetabolomicandproteomicdataincardiacischemia AT swihartmark bioengineeringsiliconquantumdottheranosticsusinganetworkanalysisofmetabolomicandproteomicdataincardiacischemia AT prasadparasn bioengineeringsiliconquantumdottheranosticsusinganetworkanalysisofmetabolomicandproteomicdataincardiacischemia AT smartkatie bioengineeringsiliconquantumdottheranosticsusinganetworkanalysisofmetabolomicandproteomicdataincardiacischemia AT jackseifel bioengineeringsiliconquantumdottheranosticsusinganetworkanalysisofmetabolomicandproteomicdataincardiacischemia AT korcykdariusz bioengineeringsiliconquantumdottheranosticsusinganetworkanalysisofmetabolomicandproteomicdataincardiacischemia AT webstermark bioengineeringsiliconquantumdottheranosticsusinganetworkanalysisofmetabolomicandproteomicdataincardiacischemia AT stewartralph bioengineeringsiliconquantumdottheranosticsusinganetworkanalysisofmetabolomicandproteomicdataincardiacischemia AT zengirene bioengineeringsiliconquantumdottheranosticsusinganetworkanalysisofmetabolomicandproteomicdataincardiacischemia AT julligmia bioengineeringsiliconquantumdottheranosticsusinganetworkanalysisofmetabolomicandproteomicdataincardiacischemia AT bakeevkatherine bioengineeringsiliconquantumdottheranosticsusinganetworkanalysisofmetabolomicandproteomicdataincardiacischemia AT jamiesonmichelle bioengineeringsiliconquantumdottheranosticsusinganetworkanalysisofmetabolomicandproteomicdataincardiacischemia AT kasabovnikolas bioengineeringsiliconquantumdottheranosticsusinganetworkanalysisofmetabolomicandproteomicdataincardiacischemia AT gopalanbanu bioengineeringsiliconquantumdottheranosticsusinganetworkanalysisofmetabolomicandproteomicdataincardiacischemia AT lianglinda bioengineeringsiliconquantumdottheranosticsusinganetworkanalysisofmetabolomicandproteomicdataincardiacischemia AT huraphael bioengineeringsiliconquantumdottheranosticsusinganetworkanalysisofmetabolomicandproteomicdataincardiacischemia AT schliebsstefan bioengineeringsiliconquantumdottheranosticsusinganetworkanalysisofmetabolomicandproteomicdataincardiacischemia AT villasboassilas bioengineeringsiliconquantumdottheranosticsusinganetworkanalysisofmetabolomicandproteomicdataincardiacischemia AT gladdingpatrick bioengineeringsiliconquantumdottheranosticsusinganetworkanalysisofmetabolomicandproteomicdataincardiacischemia |